SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers
Results and Many more...

www.AllAbtEngg.com

Available @

Questi	ion Paper Code : '	70792
M.C.A. DEGREE EX	AMINATIONS, NOVEMBE	R/DECEMBER 2019
	Third Semester CED DATA STRUCTURES A (Regulations 2017)	
Time : Three Hours		Maximum: 100 Marks
	Answer ALL questions	
	PART – A	(10×2=20 Marks)
1. What are the steps to be	involved while deleting a node	in a circularly linked list?
2. List out the applications		
3. Define nomial heap.		
4. Compare Binary search to	ree with balanced trees.	
5. How do you represent a g	raph?	
6. State the various issues in	n Flyod's algorithm.	
7. Give the various types of	Asymptotic notations.	
8. What is feasible and optim	mal solution ?	
9. How approximation algor	ithms are used for NP – hard p	roblems?
10. What are the additional backtracking techniques?	l items required for branch a	and bound to compare
	PART – B	(5×13=65 Marks)
	to implement three stacks in or	ne array. (7)
ii) Write a detailed note (OR	s on the applications of Queues.	(6)
	to print the elements of a linke	
ii) Describe the basic cor with examples.	ncepts of polynomial manipulation	on using list. Illustrate (6)

www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

www.AllAbtEngg.com

Available @

70792	
12. a) i) Explain how a node is inserted in splay tree, with example.	(7)
ii) Discuss about AVL tree, with example.	(6)
(OR)	
b) i) Illustrate the basic concepts of Fibonacci heaps.	(7)
ii) Define B-tree. Discuss about the operations.	(6)
13. a) i) Write an algorithm to find a minimum spanning tree of a weighted d	lirected
graph with example.	(7)
ii) Distinguish between depth first search and breadth first search. (OR)	(6)
b) i) What is topological sorting? Explain with a suitable example.	(7)
ii) Discuss about the Kruskal's algorithm, with example.	(6)
14. a) i) Write down the optimization technique used for Warshall's algorithm	
ii) Describe the basic concepts of Quick sort algorithm.	
(OR)	(5)
b) i) Explain how do you create optimal binary search tree? Give example	e. (8)
ii) Illustrate the basic principles of Knapsack problem.	(5)
15. a) i) Compare dynamic programming approach with greedy approach for a problem.	
ii) What is meant by NP complete problems? Describe the basic concepts.	(8)
(OR)	(5)
b) Write short notes on:	
i) Assignment problem.	(7)
ii) Amortized analysis.	(6)
PART – C (1×15=1	5 Marks)
16. a) How do you devise an N Queen problem by any two suitable techniques	How
do you extend this concept if $N = 4$ and 8. In both cases, how do you an	alyze
the complexities. Explain.	(15)
(OR)	
b) Explain an algorithm for solving travelling salesman problem, in minitime. The specifications of the problem, includes 8 cities, naming A, B, C,	imum H
The distance between two cities may be represented in a completely conn	ected
tree. Justify your answer.	(15)
	-

www.AllAbtEngg.com