## Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com ## Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com - 6. An oil company claims that less than 20 percent of all car owners have not tried its gasoline. Test this claim at the 0.01 level of significance if a random check reveals that 22 of 200 car owners have not tried the oil company's gasoline. - 7. State the identity for sum of squares for one way of analysis of variance. - 8. What is the Latin Square Design? - A garment was sampled on 10 consecutive hours of production. The number of defects found per garment is given below: Defects : 5, 1, 7, 0, 2, 3, 4, 0, 3, 2. Compute upper and lower control limits for monitoring number of defects. 10. Define tolerance limits. PART B - (5 × 16 = 80 marks) - (a) (i) Find the moment generating function of a Poisson distribution. Hence find mean and variance. (8) - (ii) Four boxes A, B, C, D contain fuses .The boxes contain 5000, 3000, 2000 and 1000 fuses respectively. The percentages of fuses in boxes which are defective are 3%, 2%, 1% and 0.5% respectively. One fuse is selected at random arbitrarily from one of the boxes. It is found to be defective fuse. Find the probability that it has come from box D. Or - (b) (i) Find mean, variance and moment generating function of Exponential distribution. Also prove the lack of memory property of the Exponential distribution. (10) - (ii) The distribution function of a random variable X is given by $F(x)=1-(1+x)e^{-x}$ ; $x\geq 0$ . Find the density function, mean, variance of X. - 12. (a) (i) X and Y are two random variables having the joint probability mass function f(x, y) = k(3x + 5y), x = 1, 2, 3: y = 0, 1, 2. Find the marginal distributions and conditional distribution of X, $P(X = x_i | Y = 2)$ , $P(X \le 2 | Y \le 1)$ . (8) - (ii) The joint density function of two random variables X and Y is given by $f(x, y) = \frac{1}{4}e^{-(x+y)/2}$ , x > 0, y > 0. Find the distribution of $\frac{X-Y}{4}$ . (8) Or 80216 ## Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com (b) The joint probability density function of two random variables X and Y is given by $f(x, y) = k(xy + y^2)$ , $0 \le x \le 1$ , $0 \le y \le 2$ . Find $$P(Y > 1)$$ , $P(X > \frac{1}{2}, Y < 1)$ and $P(X + Y \le 1)$ . (16) 13. (a) Two random samples are drawn from normal populations are given below: | Sample 1: | 17 | 27 | 18 | 25 | 27 | 29 | 13 | 17 | |-----------|----|----|----|----|----|----|----|----| | Sample 2: | 16 | 16 | 20 | 27 | 26 | 25 | 21 | | Can we conclude that the two samples are drawn from the same population? Test at 5% level of significance. (16) Or (b) (i) Fit a Poisson's distribution to the following data and test the goodness of fit. Test at 5% level of significance. (8) | x: | 0 | 1 | 2 | 3 | 4 | 5 | |----|-----|-----|----|----|---|---| | f: | 142 | 156 | 69 | 27 | 5 | 1 | - (ii) A drug manufacturer claims that the proportion of patients exhibiting side effects to their new arthritis drug is at least 8% lower than for the standard brand X. In a controlled experiment, 31 out of 100 patients receiving the new drug exhibited the side effects, as did 74 out of 150 patients receiving brand X. Test the manufacturer's claim at 5% level of significance. - 14. (a) An experiment was performed to judge the effect of four different fuels and three different types of launchers on the range of a certain rocket. Test, on the basis of following ranges in miles, whether there is a significant effect due to differences in fuels and, whether there is a significant effect due to differences in launchers. Use the 0.01 level of significance. | | Fuel 1 | Fuel 2 | Fuel 3 | Fuel 4 | |------------|--------|--------|--------|--------| | Launcher X | 45 | 47 | 48 | 42 | | Launcher Y | 43 | 46 | 50 | 37 | | Launcher Z | 51 | 52 | 55 | 49 | Or 80216 www.AllAbtEngg.com ## Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com | | test | ang la | borat | ory is | given | all th | ne ava | ilable | e bolt | ts th | at co | nnec | ted th | ding, a<br>ne steel | |------------------|---------------------------------------|-------------------------------------|------------------------------------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------| | | stru | icture<br>h of th | at 3 c | liffere | nt po | sition | s on th | ne roo | of TI | he fo | rces | requ | ired to | o shear | | | | I | ositio | on 1: | 90 | 82 | | | 33 9 | | | | | | | | | | | on 2: | | 89 | 93 1 | 04 8 | 39 9 | 95 8 | 36 | | | | | | | | Positio | | 83 | 89 | | 94 | | | | | | | | | whe | form a<br>ether t<br>uifican | the di | alysis<br>fferen | of va | rianc<br>nong | e to te<br>the sa | est at<br>ample | t the<br>me | 0.05 | o lev<br>at th | rel of<br>ne 3 p | signi | ficance<br>ons are<br>(16) | | 15. | (a) The | follov | ving d | lata g | ives t | he av | erage | life i | n ho | urs a | and i | range | e in h | ours of | | | 12 s<br>on s | sample<br>state o | es eac<br>f cont | h of 5<br>rol. | lamp | s. Co | nstruc | t X- | -cha | rt an | d R | -cha | rt, co | mment (16) | | Sai | mple No: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | 9 | 10 | 11 | 12 | | $\overline{X}$ : | | 120 | 127 | 152 | 157 | 160 | 134 | 137 | 12 | | | 144 | 120 | 127 | | D | | 30 | 44 | 60 | 34 | 38 | 35 | 45 | 62 | | 00 | | Lancas and the same of sam | | | R: | (b) (i) | The<br>each<br>dete | follow<br>of si | ving d | lata g<br>0. Co | Or<br>ives t<br>nstru | the nuct a n | imbe | r of | defect for | the | s in se da | 35<br>10 sa<br>ata ar | mples, ad also (8) | | K: | (b) (i) | The<br>each<br>dete | follow<br>of si<br>rmine<br>aber: | ving o | lata g<br>0. Co<br>her th | Or<br>ives to<br>nstrume pro | the nuct a nucess is | imber p - co | r of chartontro | defect for | ctive<br>the | s in se da | 10 sa<br>ata ar | mples, | | K: | (b) (i) | The each dete | follow<br>of si<br>rmine<br>aber: | ving of ize 10 whet | lata g<br>0. Co<br>her th | Or<br>rives the<br>nstructure pro<br>2 3 | the nuct a n cess is | 1 mbe in co | r of chartontro | defect for ol. | these these 8 | es in see da | 10 santa ar | mples, ad also (8) | | K: | (b) (i) Sampl Numbe (ii) | The each dete Numer of d | follow<br>of si<br>rmine<br>aber:<br>efecti<br>struct<br>wing | ving of ze 10 whet whet wes: | data g<br>0. Co<br>her th<br>1<br>24 | Or<br>ives instru-<br>ne pro<br>2 3<br>38 6<br>chart | the nuct a nacess is 4 4 2 34 | imber p - 6 s in co | r of chartontro | defect for ol. 7 38 | these sections 8 52 wes ( | s in se da | 10 santa ar | mples, | | R: | (b) (i) Sample Number (ii) Sample | The each dete Num er of d Constollo | follow<br>of si<br>rmine<br>aber:<br>efecti<br>struct<br>wing | ving of ze 10 whet whet wes: | lata g 0. Co her th 1 24 | Or rives to nstruction properties of the propert | the nuct a n cess is 4 2 34 for fr | imber p - control of the | r of chartontro<br>6 36<br>n de | defection of the defect | these states at the | s in se da | 10 santa ar<br>10 44 nart) i | mples, and also (8) | | K: | (b) (i) Sampl Numbe (ii) | The each dete e Num er of d | follow<br>of si<br>rmine<br>aber:<br>efecti<br>struct<br>wing<br>aber: | ving of ze 100 whet wes: | data go. Cocher the 1 24 3 antrol of 1 90 6 | Or<br>ives instru-<br>ne pro<br>2 3<br>38 6<br>chart | the nuct a <i>n</i> cess is 4 2 34 for fr 4 5 70 | imber p - 6 s in co | r of chartontro | defect for ol. 7 38 | stive these states and states are states as the states are states are states as the states are sta | 9<br>33<br>(p-Ch | 10 santa ar<br>10 44 10 10 75 | mples, and also (8) | | K: | (b) (i) Sample Number (ii) Sample | The each dete e Num er of d | follow<br>of si<br>rmine<br>aber:<br>efecti<br>struct<br>wing<br>aber: | ving of ze 100 whet wes: | data go. Cocher the 1 24 3 antrol of 1 90 6 | Or ives 1 nstructe pro 2 3 3 6 6 chart 2 3 5 8 8 | the nuct a <i>n</i> cess is 4 2 34 for fr 4 5 70 | 5 26 action 5 | r of charteners on tro | defection of the defect | these states at the | s in se da | 10 santa ar<br>10 44 nart) i | mples, and also (8) | | R: | (b) (i) Sample Number (ii) Sample | The each dete e Num er of d | follow<br>of si<br>rmine<br>aber:<br>efecti<br>struct<br>wing<br>aber: | ving of ze 100 whet wes: | data go. Cocher the 1 24 3 antrol of 1 90 6 | Or ives 1 nstructe pro 2 3 3 6 6 chart 2 3 5 8 8 | the nuct a <i>n</i> cess is 4 2 34 for fr 4 5 70 | 5 26 action 5 | r of charteentreentreentreentreentreentreentree | defection of the defect | stive these states and states are states as the states are states are states as the states are sta | 9<br>33<br>(p-Ch | 10 santa ar<br>10 44 10 10 75 | mples, and also (8) | | K: | (b) (i) Sample Number (ii) Sample | The each dete e Num er of d | follow<br>of si<br>rmine<br>aber:<br>efecti<br>struct<br>wing<br>aber: | ving of ze 100 whet wes: | data go. Cocher the 1 24 3 antrol of 1 90 6 | Or ives 1 nstructe pro 2 3 3 6 6 chart 2 3 5 8 8 | the nuct a <i>n</i> cess is 4 2 34 for fr 4 5 70 | 5 26 action 5 | r of charteentreentreentreentreentreentreentree | defection of the defect | stive these states and states are states as the states are states are states as the states are sta | 9<br>33<br>(p-Ch | 10 santa ar<br>10 44 10 10 75 | mples, and also (8) | | R: | (b) (i) Sample Number (ii) Sample | The each dete e Num er of d | follow<br>of si<br>rmine<br>aber:<br>efecti<br>struct<br>wing<br>aber: | ving of ze 100 whet wes: | data go. Cocher the 1 24 3 antrol of 1 90 6 | Or ives 1 nstructe pro 2 3 3 6 6 chart 2 3 5 8 8 | the nuct a <i>n</i> cess is 4 2 34 for fr 4 5 70 | 5 26 actio | r of charteentreentreentreentreentreentreentree | defection of the defect | stive these states and states are states as the states are states are states as the states are sta | 9<br>33<br>(p-Ch | 10 santa ar<br>10 44 10 10 75 | mples, and also (8) | | R: | (b) (i) Sample Number (ii) Sample | The each dete e Num er of d | follow<br>of si<br>rmine<br>aber:<br>efecti<br>struct<br>wing<br>aber: | ving of ze 100 whet wes: | data go. Cocher the 1 24 3 antrol of 1 90 6 | Or ives the property of pr | the nuct a <i>n</i> cess is 4 2 34 for fr 4 5 70 | 5 26 actio | r of charteentreentreentreentreentreentreentree | defection of the defect | stive these states and states are states as the states are states are states as the states are states are states as the states are | 9<br>33<br>(p-Ch | 10 santa ar<br>10 44 10 10 75 | mples, and also (8) | | K: | (b) (i) Sample Number (ii) Sample | The each dete e Num er of d | follow<br>of si<br>rmine<br>aber:<br>efecti<br>struct<br>wing<br>aber: | ving of ze 100 whet wes: | data go. Cocher the 1 24 3 antrol of 1 90 6 | Or ives the property of pr | the nuct a <i>n</i> cess is 4 2 34 for fr 4 5 70 | 5 26 actio | r of charteentreentreentreentreentreentreentree | defection of the defect | stive these states and states are states as the states are states are states as the states are states are states as the states are | 9<br>33<br>(p-Ch | 10 santa ar<br>10 44 10 10 75 | mples, and also (8) | | R: | (b) (i) Sample Number (ii) Sample | The each dete e Num er of d | follow<br>of si<br>rmine<br>aber:<br>efecti<br>struct<br>wing<br>aber: | ving of ze 100 whet wes: | data go. Cocher the 1 24 3 antrol of 1 90 6 | Or ives the property of pr | the nuct a <i>n</i> cess is 4 2 34 for fr 4 5 70 | 5 26 actio | r of charteentreentreentreentreentreentreentree | defection of the defect | stive these states and states are states as the states are states are states as the states are states are states as the states are | 9<br>33<br>(p-Ch | 10 santa ar<br>10 44 10 10 75 | mples, and also (8) |