SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

www.AllAbtEngg.com

Available @

AND A STATE OF THE STATE OF	Reg. No. :							
Q	uestion Pape	er Co	de:	903	38	1		
MA 8353 – TRA (Common to Ae Engineering/Aut Electronics and In Engineering an Manufacturin Engineering/Mo Mechanical and Ae Engineering/Robot		Semester ngineering RTIAL I ing/Aeros //Electric neering/I rumenta ne Engin ig/Mecha ing/Mecha Engineer	r ng DIFFE space l al and ndustr tion ar teering nical l atroni ring/Bi	RENT Engine Electrial End Cong/Mate Engine ics Endo Tecl	CIAL Feering ronics ngineentrol Ferial Seering gineen nnolog	EQUA Agr Engir Engir cienc (Sar ring/I	ATIO icultu ineer Indu eerir ee and dwice Produ	NS ure ring/ stria ng/ d ch)/ uction
Time: Three Hours		tions 201			Maxi			
Time: Three nours					Maxi	mam	. 100	14141
	Answer A	LL quest	ions.					
	PA	RT – A				(10×2	=20 1	Mark
1. Find the comple	ete solution of p = 2qx.							
2. Solve (D ² – 6DI	$D' + 9D'^2$) z = 0.							
3. State the Dirich	nlet's conditions.							
4. Sketch the even	n extension of the funct	ion f (x) =	sin x,	0 < x ·	< π.			
5. Classify the two	o-dimensional steady s	tate heat	conduc	ction e	quatio	n.		
6. Give the math	ematical formulation rod of length l with in	of the p	roblem	of on	e-dim	ensio	nal h perati	eat ure
7. State the convo	lution theorem for Fou	rier Tran	sforms	i.				

Available in / AllAbtEngg Android App too,

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

www.AllAbtEngg.com

Available @

90338 8. Show that $\Im_{c}[f(x)\cos ax] = \frac{1}{2}\{F_{c}(s+a) + F_{c}(s-a)\}$ where $\Im_{c}[f(x)] = F_{c}(s)$ is the Fourier cosine transform of f(x). 9. Show that $Z[a^n f(n)] = F(\frac{z}{a})$ where Z[f(n)] = F(z) is the Z-transform of f(x). State the initial and final value theorems of Z-transforms. PART - B (5×16=80 Marks) 11. a) i) Solve $(D^3 - 2D^2 D') z = \sin(x + 2y) + 3x^2 y$. (10)ii) Form the partial differential equation by eliminating the arbitrary functions from u = f(x + ct) + g(x - ct). (6) b) i) Solve $(x^2 - yz) p + (y^2 - zx) q = (z^2 - xy)$. (10)ii) Solve $p - x^2 = q + y^2$. (6) 12. a) i) Find the Fourier series of $f(x) = x^2$ in (0, 2l). Hence deduce that (10)ii) Find the complex form of the Fourier series of $f(x) = \cos ax$ in $(-\pi, \pi)$, where 'a' is neither zero nor an integer. (6) b) i) Obtain the constant term and the first three harmonics in the Fourier Cosine series of y = f(x) in (0, 6) from the following table. (10)0 1 2 3 4 5 4 8 15 7 6 2 ii) Find the Fourier series expansion of f (x) = sin ax in (-l, l). (6)13. a) i) Solve $u_t = a^2 u_{xx}$ by the method of separation of variables and obtain all possible solutions. ii) A rectangular plate with insulated surfaces is 8 cm wide and so long compared to its width that it may be considered as an infinite plate. If the temperature along the short edge y = 0 is $u(x, 0) = 100 \sin x$ 0 < x < 8 while two long edges x = 0 & x = 8 as well as the other short edge are kept at 0°C, then find the steady state temperature at any point of the plate. (OR)

IV IV IV ALLULIULULUIUSS.COIIU

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

www.AllAbtEngg.com

Available @

90338 -3- i) Solve the problem of a tightly stretched string with fixed end points x = 0 & x = 1 which is initially in the position y = f(x) and which is initially set vibrating by giving to each of its points a velocity $\frac{dy}{dt} = g(x)$ at t = 0. (10) ii) Classify the partial differential equation (6) $(1-x^2) f_{xx} - 2xyf_{xy} + (1-y^2) f_{yy} = 0.$ 14. a) i) Find the Fourier transform of f (x) where f (x) = $\begin{cases} 1, & |x| < a \\ 0, & |x| > a > 0 \end{cases}$ and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$. (10)ii) Show that $\frac{1}{\sqrt{x}}$ is self-reciprocal under the Fourier cosine transform. (6) b) i) Find the Fourier cosine and sine transforms of e^{-ax} , a > 0 and hence (10)deduce their inversion formulae. ii) Using Parseval's identity, evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)^{2}} a > 0.$ (6) (8) a) i) Find Z (sin bt) and hence find Z (e^{-at} sin bt). ii) Find $Z^{-1}\left\{\frac{8z^2}{(2z-1)(4z+1)}\right\}$ using convolution theorem. (8) b) i) Using Z-transforms, solve the difference equation $y_{n+2} - 7 y_{n+1} + 12y_n = 2^n$ given $y_0 = y_1 = 0$. Use partial fraction method to find the inverse Z-transform. (8) ii) Using residue method, find $Z^{-1}\left\{\frac{z}{z^2+2z+2}\right\}$ (8)