

Question Paper Code: 80219

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Fourth Semester

Computer and Communication Engineering

MA 8451 — PROBABILITY AND RANDOM PROCESSES

(Common to Electronics and Communication Engineering/ Electronics and Telecommunication Engineering)

(Regulation 2017)

Time: Three hours

Maximum: 100 marks

(Use of statistical table is permitted)

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Show that for any events A and B in S, $P(B) = P(B/A)P(A) + P(B/\overline{A}) \cdot P(\overline{A})$.
- Find the second moment about the origin of the Geometric distribution with parameter p.
- 3. The joint pdf of a bivariate random variable (X, Y) is given by $f_{xy}(x, y) = \begin{cases} k, & 0 < y \le x < 1 \\ 0, & \text{otherwise} \end{cases}$ where k is a constant. Determine the value of k.
- Define covariance and coefficient of correlation between two random variables x and y.
- 5. Define Markov process.
- 6. Examine whether the Poisson process $\{X(t)\}$, given by the probability law $p\{X(t)=r\}=\frac{e^{-\mu}(\lambda t)^r}{r!}, r=0,1,2....$ is covariance stationary.
- 7. State any two properties of auto correlation function.
- 8. Show that the power spectrum of a (real) random process $\{X(E)\}$ is real.

- State fundamental theorem on the power spectrum of the output of a linear system.
- 10. Find the system transfer function, if a linear time invariant system has an impulse function $H(t) = \begin{cases} \frac{1}{2c}, & t \le c \\ 0, & \text{otherwise} \end{cases}$

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) State and prove Baye's theorem.
 - (ii) Derive the moment generating function of normal distribution. (8)

Or

- (b) (i) Derive the moment generation function of Poisson distribution and hence find its first three central moments. (8)
 - (ii) Out of 800 families with 4 children each, how many families would be expected to have (8)
 - (1) 2 boys and 2 girls
 - (2) atleast one boy
 - (3) atmost two girls
 - (4) children of both sexes.

Assume equal probabilities for boys and girls.

 (a) (i) Determine if random variables X and Y are independent when their joint PDF is given by

$$f_{xy}(x, y) = \begin{cases} Le^{-(x+y)}, & 0 \le x \le y, 0 \le y < \infty \\ 0, & \text{otherwise} \end{cases}$$
 (8)

(ii) Assume that the random variable S is the sum of 48 independent experimental values of the random variable X whose PDF is given by

$$f_x(x) = \begin{cases} \frac{1}{3}, & 1 \le x \le 4\\ 0, & \text{otherwise} \end{cases}$$

Find the probability that S lies in the range (108, 126). (8)

Or

(b) Two independent variables X and Y are define by f(x) = 4ax, $0 \le x \le r$, f(y) = 4by, $0 \le y \le s$ show that $r(U, V) = \frac{b-a}{b+a}$ where U = X+Y and V = X-Y.

80219

(8)

- 13. (a) (i) The random process $\{X(t)\}$ is defind as $X(t) = 2e^{-At}\sin(wt + B)u(t)$ where u(t) is the unit step function and the random variables A and B are independent, A is uniformly distributed in (0, 2) and B is uniformly distributed in $(-\pi, \pi)$. Verify whether the process is wide sense stationary.
 - (ii) Prove that the inter arrival time of a poisson process with parameter λ has an exponential distribution with mean $\frac{1}{\lambda}$. (6)

Or

- (b) (i) Find the nature of the states of the Markov Chain with three states 0, 1, 2 and with one step transition probability matrix, $P = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}.$ (8)
 - (ii) If $\{X_1(t)\}$ and $\{X_2(t)\}$ represent two independent poisson processes with parameters $\lambda_1 t$ and $\lambda_2 t$ respectively, then prove that $P[X_1(t) = X/X_1(t) + X_2(t) = n]$ is Binomial with parameters n and p where $p = \frac{\lambda_1}{\lambda_1 + \lambda_2}$. (8)
- 14. (a) (i) A stationary random process $\{X(t)\}$ has the power spectral density $S_{xx}(w) = \frac{24}{w^2 + 16}.$ Find the mean-square value of the process by Brute-Force method. (10)
 - (ii) Prove that autocorrelation function of the random process with the power spectral density given by $S_{xx}(w) = \begin{cases} s_0, |w| < w_0 \\ 0, \text{ otherwise} \end{cases}$ is $\frac{s_0}{-1} \sin \omega_0 \tau \ . \tag{6}$

Or

(b) (i) Two random processes X(t) and Y(t) are defined as follows.

$$X(t) = A\cos(wt + \theta)$$
$$Y(t) = B\sin(wt + \theta)$$

where A, B and w are constant and θ is a random variable that is uniformly distributed between 0 and 2π . Find the cross correlation function of X(t) and Y(t) and show that X(t) and Y(t) are jointly WSS.

3

80219

- (ii) Two jointly stationary random processes X(t) and Y(t) have the cross power spectral density given by $S_{xy}(w) = \frac{1}{-w^2 + j4w + 4}$. Find the corresponding cross correlation function. (8)
- 15. (a) (i) A random process $\{X(t)\}$ is the input to a linear system whose impulse response is $h(t) = 2e^{-t}$, $t \ge 0$. If the autocorrelation function of the process is $R_{xx}(\tau) = e^{-2|\tau|}$, find the power spectral density of the output process Y(t).
 - (ii) A linear system has a transfer function given by $H(w) = \frac{w}{w^2 + 15w + 50}$. Determine the power spectral density of the output when the input function is white noise that has a mean square value of $1.2V^2/Hz$.

Oi

- (b) X(t) is a Wide-Sense stationary process that is the input to a linear system with the transfer function $H(w) = \frac{1}{a+jw}$ where a>0. If X(t) is a zero-mean white noise with power spectral density $\frac{N_0}{2}$, determine the following
 - (i) The impulse response h(t) of the system
 - (ii) The cross-power spectral density $S_{\chi\gamma}\left(w\right)$ of the input process and the output process $Y\left(t\right)$
 - (iii) The cross correlation function $R_{YX}(\tau)$ of Y(t) and X(t)
 - (iv) The power spectral density $S_{YY}(w)$ of the output process. $(4 \times 4 = 16)$

4

80219