SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

www.AllAbtEngg.com

Available @

	Reg. No.:								
G	uestion P	aper	Cod	e:	90	33	7		
B.E./B.Tech. D MA8352 – LINEA (Common to : Bion Electronics and C	Me AR ALGEBRA A nedical Engineer ommunication E	Third Sendical Ele AND PAR Sing/Comp	nester ctronic TIAL puter a ng/Ele ring)	es DIF and (etroi	FER Comi	ENTI nunic	AL E	QUA Engi	TIONS neerin
Time: Three Hours						Ma	aximu	m:10	00 Mar
	Ans	wer ALL	questic	ns					
		PART -	-				(10:	×2=2() Mark
1. If $V = R^3$, then not.	verify whether W	$= \{(a_1, a_2,$	a ₃)/2a	1 - 78	a ₂ + 8	a ₃ = 0}	is a s	ubspa	ce or
2. Find the dimen	sion of W, where	$W = \{(x_1,$	x ₂ , x ₃)/	x ₁ +	x ₂ +	$x_3 = 0$	}.		
3. Let $T: P_3(R) \rightarrow$ and B_2 be the s	P ₂ (R) be a linear tandard bases for	transform P ₃ (R) an	nation nd P ₂ (I	defin R) re	ed by	y T (f(: ively.	x)) = f Then	'(x). L find [et B ₁ T].
4. Test the matrix	()					norm	al hac	is or r	not
5. Let $V = R^2$ and					ortho	norm	ai bas.	is of f	106.
6. Find the conjug	gate transpose of	$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$	+4i						
7. Form the parti $z = e^{x-y} \cdot f(x + y)$	al differential equ				the a	rbitra	ry fur	nction	from
8. Find the comp	ete integral of th	e partial o	lifferer	ntial	equa	tion z	= px +	+ qy +	$p^2 - q^2$
9. State Dirichlet $c \le x \le c + 2l$.	's conditions for I	ourier se	ries of	f(x) d	lefine	ed in t	he int	erval	
10. Write all three	possible solution	s of one d	imensi	onal	heat	equat	ion.		
								0	
								*	

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

www.AllAbtEngg.com

Available @

90337 PART - B (5×16=80 Marks) 11. a) i) Determine the given set in $P_4(R)$ is linearly dependent or linearly independent for $x^4 - x^3 + 5x^2 - 8x + 6$, $-x^4 + x^3 - 5x^2 + 5x - 3$, $x^4 + 3x^2 - 3x + 5$ and $2x^4 + x^3 + 4x^2 + 8x$ (8) ii) Let S = $\{v_1, v_2, v_3\}$ where $v_1 = (1, -3, -2), v_2 = (-3, 1, 3), v_3 = (-2, -10, -2).$ Verify whether S forms a basis or not. (8) b) i) Verify whether the first polynomial can be expressed as a linear combination of the other two in P_3 (R) for the given $x^3 - 8x^2 + 4x$, $x^3 - 2x^2 + 3x - 1$ and (8)ii) Let W_1 and W_2 be subspaces of V. Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ (or) $W_2 \subseteq W_1$. 12. a) i) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by T(x, y, z) = (2x, -y, 3z). Verify whether T is linear or not. Find N(T) and R(T) and hence verify the dimension theorem. (8) ii) Let $T: P_2(R) \to P_2(R)$ be defined as T[f(x)] = f(x) + (x+1) f'(x). Find eigenvalues and corresponding eigenvectors of T with respect to standard basis of $P_2(R)$. (8) b) i) Test for diagonalizability of the matrix $A = \begin{bmatrix} 8 & -5 & 0 \end{bmatrix}$ and if A is diagonalizable, find the invertible matrix Q such that $Q^{-1}AQ = D$. ii) Let T be the linear operator on \mathbb{R}^3 defined by $\mathbb{T}\left| a_2 \right| = \left| 2a_1 + 3a_2 + 2a_3 \right|$ Determine the eigenspace of T corresponding to each eigenvalue. Let B be the standard ordered basis for R3. 13. a) i) Let R3 have the Euclidean inner product. Use Gram-Schmidth process to transform the basis {u1, u2, u3} into an orthonormal basis, where $u_1 = (1, 1, 1), u_2 = (0, 1, 1) \text{ and } u_3 = (0, 0, 1).$ (10)ii) Let $S = \{(1, 1, 0), (1, -1, 1), (-1, 1, 2)\}$ be an orthogonal set then orthonormal set is $\left\{ \frac{1}{\sqrt{2}}(1,1,0), \frac{1}{\sqrt{3}}(1,-1,1), \frac{1}{\sqrt{6}}(-1,1,2) \right\}$ both are basis of \mathbb{R}^3 . Let $x = (2, 1, 3) \in \mathbb{R}^3$. Express x as a linear combination of orthogonal set S and orthonormal set. (6) (OR)

IV IV AL AUDI AUDILUNG S.COIIU

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

www.AllAbtEngg.com

Available @

90337 -3b) i) Use the least square approximation to find the best fit with a linear function and hence compute the error for the following data (-3, 9), (-2, 6), (0, 2) (10)and (1, 1). ii) Compute the orthogonal complement of $S = \{(1, 0, i), (1, 2, 1)\}$ in C^3 . (6)14. a) i) Solve $z = p^2 + q^2$. (8) ii) Find the complete integral of $p^2y(1 + x^2) = qx^2$. (8) b) i) Solve $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$. (8)ii) Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = x + y$. (8) 15. a) i) Find the cosine series for $f(x) = x - x^2$ in the interval 0 < x < 1. (8) ii) Obtain the sine series for f(x) = x in $0 < x < \pi$ and hence deduce that (8) b) i) An finitely long uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth is π . This end is maintained at a temperature u₀ at all points and other edges are kept at zero temperature. Determine the temperature at any point of the plate in the steady state. ii) A tightly stretched string with fixed end points x = 0 and x = 1 is initially in a position given by $y(x, 0) = y_0 \sin^3 \left(\frac{\pi x}{1}\right)$. If it is released from rest from this position, find the displacement y at any time and at any distance from the end x = 0.

IN IN IN ALLUMINATION S. COLL