SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more... Available @

www.AllAbtEngg.com

	EDZ=BIXE	Reg. No	.: 🔲							8048
	Q	uestion	Pap	er C	ode	: 94	082	2		
B.E	./B.Tech. DI	EGREE EXA				EMBEI	R/DEC	CEMBI	ER 201	9
			Second Civil E							
	PH 216	1/080040002/	/PH23 -	- ENG	INEEL		PHYS	ICS – I	П	
		(Co	mmon t (Regula			es)				
Time	Three Hours						Ma	ximum	: 100 N	Iarks
Tible .	in ce mours	A	Answer A	I.I. one	etione					
		II.						(10×9	2=20 M	arke)
				RT – A		Ball		(10^2	2-20 M	arks)
		e expression fo								
		ssion for the c								
at	nd the resist 300 K. For (300 K.	ance of an intr Ge, $n_i = 2.5 \times 1$	rinsic Ge 10 ¹⁹ /m ³ ,	rod 1 c μ _c = 0.3	m long, 9 m ² v	1mm v	vide, a nd μ _p :	nd 0.5 i = 0.19 i	mm thic n ² v ⁻¹ s ⁻	ek -1
4. G	iven an extr	insic semicon	ductor,	how wi	ll you	find w	hethe	r it is	n-type	or
p-	type.									
5. T	he magnetic: $-(0.3 \times 10^{-5})$	field strength). Calculate th	of silicon ne magne	is 1500 etisatio	Am ⁻¹ .	If the r lux der	magne nsity is	tic susc s silicor	eptibili n.	ty
6. W	hat is mean	t by persisten	t current	?						
7. D	efine dielect	ric constant.					2			
8. I	Distinguish between dielectric loss and dielectric breakdown.									
		elasticity in s								
	live four pro	perties of carb	on nano	tubes.						
		2000								
174										

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more... Available @

www.AllAbtEngg.com

9408	32		-2-		
0100			PART – B	(5×16=80 Ma	rks)
11. 8		fine electrical conductiv	rity. Obtain an expression	for electrical conductivity	7
	ere i	(OR)			
1	fun	nction. How does it vary	statistics, state the natury with temperature?		n
12. 8		of Fermi level in intrin	intrinsic semiconductor? Assic semiconductor with te	mperature.	(8)
	ii)	Derive the expression semiconductor and ex	n for electrical conductivity plain the variation of it wi	y in an intrinsic ith temperature.	(8)
		(OR)			
	b) i)	impurity concentration	changes its position with the on in N – type semiconduc	tors?	(6)
	ii)	Define Hall effect in determined?	semiconductors. How the	Hall coefficient is	(10
13.	a) i)	susceptibility of the r	erial has a magnetic field naterial at room temperate nd flux density of the mate	ure is 3.7 × 10°, calculat	he e (4
	**>	2 1t			(4
	11)		nt properties of ferrites.		(4
	iii)	TITL the amplia			(4
		(OR)			
	b) i	i) Prove that susceptible is zero.	ility of superconductor is –1	and relative permeability	(
	ii	ii) Briefly explain the	following:		(
		1) Cryotron	Atom Fording areas.		I III
		2) Magnetic Levita			
		3) High Temperatu	ure Super Conductors.		
		4		±	

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more... Available @ www.AllAbtEngg.com

	-3-	94082		
14. a) Explain about :				
i) Electronic Polarisation	n, Ionic Polarisation.	(8)		
ii) Dielectric breakdown.		(8)		
(OR)				
	the internal field in a dielectric and hence aution.	obtain (16)		
15. a) i) What are shape memory alloys.	What are shape memory alloys? Describe the characteristics of sh memory alloys.			
ii) List out any four appl	List out any four applications of shape memory alloys.			
iii) Mention any two adva	Mention any two advantages and two disadvantages of SMAs.			
(OR)				
b) i) What are nanoparticle using ball-milling tech	es? Explain how nanoparticles can be prod nnique.	duced (2+6)		
	ical, chemical and magnetic properties of	(0)		
nanoparticles.		(8)		
	*			
		Y		
		t.		