2 11	
Reg. No. :	

Question Paper Code: 72092

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

First Semester

Civil Engineering

PH 2111/PH 13/080040001 — ENGINEERING PHYSICS — I

(Common to All Branches)

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is inverse piezo- electric effect?
- 2. What is cold working?
- 3. Give any four applications of laser in industry.
- 4. Why is a four level laser preferred compared to three level laser.
- 5. Calculate the numerical aperture for an optical fibre immersed in water with a core index of 1.56 and cladding index of 1.52. (Refractive index for water is 1.33)
- 6. How does an optical fibre work as a temperature sensor?
- 7. What is the basic principle of scanning electron microscopy?
- 8. What is Compton wavelength? Does it depend on the wavelength of the source?
- 9. What are Miller indices? Write the steps to find Miller indices.
- 10. Why is diamond insulator and graphite a conductor?

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) What is magnetostriction effect? With a neat circuit diagram, describe the production of ultrasonic waves by magnetostriction method. (10)
 - (ii) Explain with a block diagram the sonogram technique used to study the movement of heart. (6)

Or

- (b) (i) Explain the principle of working of Ultrasonic flaw detector with a block diagram. Also explain the different modes of display in use.

 (10)
 - (ii) What is acoustic grating? Explain how it can be used to determine the velocity of ultrasound in liquids.(6)
- 12. (a) (i) Explain the process of spontaneous emission and stimulated emission. Derive Einstein's co-efficients and hence find the ratio between rate of spontaneous emission and stimulated emission. (12)
 - (ii) Find the ratio of rate of spontaneous emission to rate of stimulated emission for a sodium vapour lamp that emits light of wavelength 589.3 nm at 500 K. (4)

Or

- (b) (i) With necessary theory explain the construction and working of CO_2 laser. Explain the role of He and N_2 in CO_2 laser. (12)
 - (ii) A laser diode is fabricated from a semiconducting material having a direct band gap of 2.25 eV. Find the colour of the light that will be emitted by the laser diode in operation. (4)
- 13. (a) (i) Explain fibre optic communication system with a neat block diagram. Give its advantages. (8)
 - (ii) Explain with a neat sketch the double crucible method of drawing optical fibres. (8)

Or

- (b) (i) What are attenuation and dispersion losses in optical fibres. Explain how these losses are minimized. (8)
 - (ii) Explain the construction and working of fibre optic medical endoscopy and its applications. (8)

- 14. (a) (i) Solve Schrodinger wave equation for a free particle in a one-dimensional box and find its energy values. (12)
 - (ii) X-rays of wavelength $\lambda = 0.2 \, nm$ are scattered from a block of graphite. The scattered X-rays are observed at an angle of 45° to the incident beam. Calculate the wavelength of the X-rays scattered at this angle. Find the fraction of energy lost by the photon in this collision. (4)

Or

- (b) (i) Derive Planck's radiation law and explain the energy spectrum of a blackbody. (12)
 - (ii) Calculate the minimum energy of a neutron confined to a one-dimensional potential well of width $10^{-14} m$. (Mass of neutron = $1.672 \times 10^{-27} \,\mathrm{kg}$). By how much does this minimum energy change if neutron is replaced by a proton? (4)
- 15. (a) (i) Describe BCC and FCC structures and calculate the atomic radius and packing factor. (12)
 - (ii) Explain polymorphism and allotropy. (4)

Or

- (b) (i) What are Bravais lattices? Describe the same for a 3-dimensional space. (8)
 - (ii) Describe with suitable diagrams the edge and screw dislocations in a crystal. (8)

