Reg. No. :

Maximum: 100 marks

Question Paper Code: 11625

B.E./B.Tech. DEGREE EXAMINATION, JANUARY 2013.

First Semester

(Common to all Branches)

PH 2111/PH 13/080040001 — ENGINEERING PHYSICS — I

(Regulation 2008/2010)

Time: Three hours

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is acoustic grating?
- What is inverse piezoelectric effect?
- Explain stimulated emission.
- 4. Name any two uses of lasers in medicine.
- Define total internal reflection.
- Calculate the numerical aperture and hence the acceptance angle for an optical fibre whose core and cladding has refractive index of 1.59 and 1.40 respectively.
- 7. Give the significance of wave function.
- 8. Write Planck's radiation formula.
- 9. What are Bravais lattices?
- 10. What are lattice parameters of a unit cell?

PART B - (5 × 16 = 80 marks)

11.	(a)	(i)	What is the phenomenon of magnetostriction? Using phenomenon explain how high frequency sound wave produced.	that s are 2 + 10)
		(ii)	A nickel crystal of length 10 cm with density 8.1×10^3 kg/n Youngs modulus 8.2×10^{11} N/m² is used in a magnetost oscillator. Determine the fundamental frequency of the ultr waves generated.	rictive
			Or	
	(b)	(i)	Explain in detail how a A- Scan technique is employed to lo defect.	cate a (12)
		(ii)	Find the depth of a submarine if an ultrasonic pulse reflected the submarine is received 0.33 sec after sending out the ultr waves. Given the sound velocity in sea water is 1440 m/sec.	d from asonic (4)
12.	(a)	Describe the construction and working of CO2 laser and their uses. (16)		
			Or	
	(b)	Desc	cribe the construction and working of He-Ne laser and their use	s. (16)
13.	(a)	Give	e an account of fibre optic communication system and its advan	itages. (16)
			Or	
	(b)	Discuss about the various types of optical fibres. (16)		
14.	(a)	Give	e an account of Scanning Electron Microscope.	(16)
			Or	
	(b)	Der	ive Schrödinger time dependent wave equation.	(16)
15.	(a)		at are Miller indices? Show that for a cubic lattice the diverse two successive (h k 1) planes is given by $d = a/\sqrt{h^2 + k}$	
				E 100 FM 1

Or

(b) Calculate the number of atoms per unit cell, coordination number and packing factor for F.C.C and B.C.C structures. (4+4+4+4)