					7	1,500		100	
Reg. No.:						-			

Question Paper Code: 71769

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

First Semester

Civil Engineering

MA 2111/MA 12/080030001 — MATHEMATICS — I

(Common to all branches)

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$ then find the eigen values of A^{-1} .
- 2. State Cayley-Hamilton theorem.
- 3. Find the centre and radius of the sphere

$$4(x^2 + y^2 + z^2) - 8x + 12y - 16z - 20 = 0.$$

- 5. Find the radius of curvature of the curve given by $y = c \log \sec \frac{x}{c}$.
- 6. Find the envelope of the family of lines $y = mx + \frac{a}{m}$ where m is the parameter and a is constant.
- 7. If $u = \frac{x+y}{xy}$ find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.

- 8. State Euler's theorem for homogeneous function.
- 9. Evaluate $\int_{0}^{3} \int_{0}^{2} e^{x+y} dy dx.$
- 10. Express volume of a solid as a triple integral.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}.$ (8)
 - (ii) Verify the Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ and hence find A^{-1} .

Or

- (b) Reduce the quadratic form $2x^2 + y^2 + z^2 + 2xy 2xz 4yz$ into a canonical form by an orthogonal transformation and hence find its nature. (16)
- 12. (a) (i) Find the centre and radius of the circle given by the equations $x^2 + y^2 + z^2 8x + 4y + 8z 45 = 0, x 2y + 2z 3 = 0.$ (8)
 - (ii) Find the equation of the cone whose vertex is origin and guiding curve the circle $x^2 + y^2 + z^2 + 2x y + 3z 1 = 0$, x y + z + 4 = 0. (8)

Or

- (b) Find the equation of the cylinder whose generators are parallel to the line x = y = z and whose guiding curve is the circle $x^2 + y^2 + z^2 2x 3 = 0$, 2x + y + 2z = 0. (16)
- 13. (a) Find the equation of the circle of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at $\left(\frac{a}{4}, \frac{a}{4}\right)$. (16)

Or

(b) Find the evolute of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. (16)

- 14. (a) (i) If $u = \tan^{-1} \left[\frac{x+y}{\sqrt{x} + \sqrt{y}} \right]$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{4} \sin 2u$. (8)
 - (ii) Find the Jacobian of y_1 , y_2 , y_3 with respect to x_1, x_2, x_3 if $y_1 = \frac{x_2 \ x_3}{x_1}$, $y_2 = \frac{x_3 \ x_1}{x_2}$, $y_3 = \frac{x_1 \ x_2}{x_3}$. (8)

Or

- (b) (i) Expand $\tan^{-1}\left(\frac{y}{x}\right)$ as a Taylor series about the point (1,1) upto 2^{nd} degree terms. (8)
 - (ii) Find the shortest distance from the point (1,0) to the parabola $y^2 = 4x$.
- 15. (a) (i) Evaluate $\iint_R xy \, dx \, dy$, where R is the region bounded by the lines, x = 0, y = 0 and x + 2y = 2. (8)
 - (ii) Find the area bounded by the parabolas $y^2 = 4 x$ and $y^2 = x$ by double integration. (8)

Or

- (b) (i) Evaluate $\int_{0}^{1} \int_{y}^{2-y} xy \, dx \, dy$ by changing the order of integration. (8)
 - (ii) Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \frac{dz \, dy \, dx}{(x+y+z+1)^3}$. (8)

