ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE B.E./ B.TECH. DEGREE EXAMINATIONS: NOV / DEC 2010

$$
\begin{aligned}
& \text { REGULATIONS: } 2008 \\
& \text { THIRD SEMESTER }
\end{aligned}
$$

080100008 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS (COMMON TO CIVIL / EEE IEIE IiCE I ECE IBIOMEDICAL IBIOTECH / AERO IAUTO ICSE IiT I MECHANICAL ICHEMICAL IFT ITT ITC)

Time: 3 Hours
Max.Marks: 100
PART - A
(20 $\times 2=40$ Marks $)$

ANSWER ALL QUESTIONS

1. State the conditions for $f(x)$ to have Fourier series expansion.
2. Write ao ,a n in the expansion of $x+x^{3}$ as Fourier Series in (-n, Jr).
3. Expand $f(x)=1$ in a sine series in $O<x<J r$
4. Find Root Mean Square value of the function $f(x)=x$ in the interval $(0, /)$.
5. Define Fourier Transform Pair.
6. Find Fourier Cosine transform of $e-2 x$ -
7. If $\mathrm{F}(\mathrm{S})$ is the Fourier Transform of $f(x)$, show that the Fourier Transform of $e^{i a x} f(x)$ is $F(S+0)$.
8. State Parseval's Identity for Fourier Transform.

Eliminate the arbitrary constants a \& b from $z=\left(x^{2}+0\right)(y 2+b)$.
Form the POE by eliminating the functions from $\mathrm{z}=f(x+t)+g(x-t)$.
Find the com plete integral $q=2 p x$.
12. Solve $\left(0^{3}-300,2+20,3\right) \quad z=0$.
13. Find the nature of $P O E 4 u_{x x}+4 u_{x y}+U_{y y}+2 u_{x}-U y=O$.
14. What are the various solutions of one dimensional Wave Equation?
15. A string is stretched and fastened to two points 'I' apart. Motion is started by displacing the string into the form $y=Y_{0} \operatorname{Sine}_{\frac{\lrcorner r x}{}}^{l}$)from which it is released at time $t=0$.
Formulate this problem as the boundary value problem
16. A rod of length 20 cm whose one end is kept at $30^{\circ} \mathrm{C}$ and the other end is kept at $70^{\circ} \mathrm{C}$ is maintained so until steady state prevails. Find the steady state temperature.
17. Find $Z\left[e_{-a n}^{a n}\right.$.
18. Prove that $Z\left[n J=\frac{z}{(z \xrightarrow{z}) 2}\right.$
19. Prove that $Z[f(n+1)]=z F(z) \quad-z f(O)$
20. State Initial and Final value theorem on Z- transform.

PART-B
($5 \times 12=60$ Marks)
ANSWER ANY FIVE QUESTIONS

21 (a) If $f(x)=(\underset{r}{\sim} \simeq \underline{x})$ find the Fourier Series of the period $2 J r$ in the interval $(0,2 J r)$.

$$
\begin{equation*}
\text { Hence deduce that } 1-\frac{1}{357^{-1}}{ }^{1}+\ldots=\frac{\mathrm{Jr}}{4} \tag{8}
\end{equation*}
$$

(b). Find the Fourier expansion of $f(x)=x$ in the interval (- Jr, Jr)
22. Show that the Fourier Transform of $f(x)=\begin{array}{ll}a^{2} & x^{x} \quad|x|: s: a \\ 0 & \text { otherwzse }\end{array}$ is

$$
J\left(\operatorname{Sin} \frac{t-t}{t^{3}} \cos t\right)^{\prime} d t=!!-
$$

23.(a) Solve (mz-ny)p + (nx-Iz)q = ly-mx
(b) Solve $\left(0^{3}+020^{\prime} _00^{\prime} 2 _0^{\prime} 3\right) \mathrm{z}=\mathrm{e}^{\mathrm{x}} \quad \operatorname{Cos} 2 Y$

Using Parseval's Identity show that

x	0	1	2	3	4	5	6
$f(x)$	9	18	24	28	26	20	9

(6)

A string of length I is initially at rest in its equillibrium position and motion is $0: S: x: S: 1 / 2$ started by giving each of its points is given a velocity $\quad V=\{e(/-x), 1 / 2: ' \mathrm{~S}: \mathrm{x}: \mathrm{S}: 1$ Find the displacement function $y(x, t)$.

25 (a) Evaluate $^{\mathrm{Z}} \quad=\left\lvert\,\left[\begin{array}{ll}\mathrm{z} 2+\frac{7 \mathrm{z}}{}{ }^{\text {T }} 10 &]\end{array}\right.\right.$
(6)

Using z-transforms solve $u(n+2)-5 u(n+1)+6 u(n)=4$ " given that $u(0)=0, u(1)=1$
hence find the value of $\underset{\sim}{\sim} \sin 4 x$
$0 x$

A metal bar 30 cm long has its ends A and B kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively, until steady state conditions prevail. The temperature at each end is then suddenly reduced to OOCand kept so. Find the resulting temperature $u(x, t)$ taking $\mathrm{x}=\mathrm{O}$ at A .

Solve $p(l+q)=q z$
Using Convolution theorem, evaluate $Z-1\left[\begin{array}{c}2 \\ (z-1)(z-3) \\ z\end{array}\right.$
*****THE END*****

26(a) Find the constant term and the coefficient of the first sine and cosine terms in the Fourier expansion of, $\mathrm{y}=\mathrm{f}(\mathrm{x})$ as given in the following table:-

