Reg. No.: 22508104015

Question Paper Code: 10270

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2012.

Seventh Semester

Information Technology

CS 2303/CS 53/CS 1303/10144 CS 504 — THEORY OF COMPUTATION

(Common to Fifth Semester Computer Science and Engineering)

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is proof by contradiction?
- 2. Define ε closure (q) with an example.
- 3. Construct NFA for the regular expression a* b*.
- 4. Is regular set is closed under complementation? Justify.
- 5. Specify the use of context free grammar.
- 6. Define parse tree with an example.
- 7. State pumping lemma for CFL.
- 8. What is chomsky normal form?
- 9. Mention the difference between P and NP problems.
- 10. What is recursively enumerable language?

- 11. (a) (i) Prove by induction on n that $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$ (6)
 - (ii) Construct a DFA accepting binary strings such that the third symbol from the right end is \perp . (10)

Or

(b) (i) Construct an NFA without ε - transitions for the NFA give below.

(8)

- (ii) Construct an NFA accepting binary strings with two consecutive o's. (8)
- 12. (a) (i) Obtain minimized finite automata for the regular expression (b/a)* baa. (10)
 - (ii) Prove that there exists an NFA with ε transitions that accepts the regular expression γ .

Or

(b) (i) Which of the following languages is regular? Justify.

(1)
$$L = \left\{ a^n b^m / n, m \ge \perp \right\}$$

(2)
$$L = \left\{ a^n b^n / n \ge \perp \right\}.$$
 (8)

(ii) Obtain the regular expression for the finite automata. (8)

13.	(a)	(i)	Is the grammar $E \to E + E/E * E/id$ is ambiguous? Justify you answer. (6
		(ii)	Find the context free languages for the following grammars.
			(1) $S \to asbs/bsas/\varepsilon$
			$(2) S \to asb/ab \tag{10}$
			Or
	(b)	(i)	Construct the PDA for $L = \{ww^R/w \text{ is in } (a+b)^*\}$ (10)
		(ii)	Discuss the equivalence between PDA and CFG. (6
14.	(a)	(i)	Find Greibach normal form for the grammar.
			$S \to AA / \perp A \to SS / \theta $ (10)
		(ii)	Explain any two higher level techniques for Turing machine construction. (6)
			Or
	(b)	(i)	Construct Turing machine for
	(b)	(i)	Construct Turing machine for $L = \left\{ \perp^n \theta^n \perp^n / n \ge \perp \right\} \tag{10}$
	(b)	(i) (ii)	
15.	(b) (a)		$L = \left\{ \perp^n \theta^n \perp^n / n \ge \perp \right\} \tag{10}$
15.		(ii)	$L = \left\{ \bot^n \ \theta^n \ \bot^n \ / n \ge \bot \right\} \tag{10}$ Discuss the closure properties of CFLS. (6)
15.		(ii) (i)	$L = \left\{ \bot^n \ \theta^n \ \bot^n \ / n \ge \bot \right\} \tag{10}$ Discuss the closure properties of CFLS. (6) Explain undecidability with respect to post correspondence problem.
15.		(ii) (i)	$L = \left\{ \bot^n \ \theta^n \ \bot^n \ / \ n \ge \bot \right\} \tag{10}$ Discuss the closure properties of CFLS. (6) Explain undecidability with respect to post correspondence problem. (8) Discuss the properties of recursive languages (8)