32	0.00	16 - 50	399	85' 80	5 63 3	60 386 39	
Reg. No. :					beset:	C3190	

Question Paper Code: 21375

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Third Semester

Computer Science and Engineering

CS 2201/CS 33/080230007/10144 CS 302- DATA STRUCTURES

(Regulations 2008/2010)

(Common to 10144 CS 302 — Data Structures for B.E (Part-Time) Second Semester CSE - Regulations 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marke})$

- 1. Define ADT.
- 2. Write a C routine to deallocate the entire linked list.
- 3. What is a threaded binary tree?
- 4. List few applications of trees.
- 5. Simulate the result of inserting 3,1,4,6,2,8,9 into an initially empty AVL Tree.
- 6. How do you calculate the depth of a B-Tree?
- 7. Define the approach Union-By-Size.
- 8. State the advantages of collision resolution strategies.
- 9. Differentiate strongly connected and weakly connected graph.
- 10. What is Biconnectivity?

PART B - (5 × 16 = 80 marks)

11.	(a)	1000 and 100	Explain the insertion deletion and traversal operations in a circularly oubly linked list with suitable ADT's and examples. (16)						
			Or						
	(b)	(i)	Write ADT operations for a linear queue using array implementation. (8)						
		(ii)	Write functions to multiply two polynomials using linked list implementation. (8)						
12.	(a)	Writ	e a C program to visit the binary tree using various tree traversals. (16)						
			Or						
	(b)	(i)	Simulate a dictionary consisting of terminologies and their meanings (Key/Value pairs) with suitable search operations using binary search tree. (10)						
		(ii)	Explain Huffman coding with a suitable example. (6)						
13.	(a)		ain insertion and deletion operations of B — Tree with simulate ract data types. (16)						
			Or						
	(b)	(i)	Explain how deletion can take place in AVL trees with suitable algorithms. (8)						
		(ii)	Write a suitable operations for percolate up and percolate down operations in a binary heap. (8)						
14.	(a)	Give	input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function						
		h(x)	= x mod 10, show the resulting						
		(i)	Open addressing hash table using linear probing (6)						
		(ii)	Open addressing hash table using quadratic probing (6)						
		(iii)	Open addressing hash table with second hash function. (4)						
			h (2 (x) -7 - (X mod 7)						
120	10		Or						
157	(b)	(i)	Write the necessary algorithms required for union operation in disjoint set. (8)						
		(ii)	Explain the process of path compression in detail. (8)						
			2 21375						

- Write a C program to implement topological sort. 15. (a) (i)
- (ii) Explain minimum cost spanning Tree of graphs using Kruskals algorithm with suitable examples and ADT. (10)

(b) Explain the depth first approach of finding articulation points in a connected graph with necessary algorithms. (16)