			 		100000
eg. No. :	181		100	9	1203850
AO. NO .			1 1		- 1
-B. T		 28	1 1		- 1
		 88	1 1		

Question Paper Code: 21454

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015

Fifth Semester

Electronics and Communication Engineering

EC 2308/EC 53/10144 EC 605 — COMPUTER ARCHITECTURE AND ORGANIZATION

(Common to Sixth Semester Biomedical Engineering)

(Regulations 2008/2010)

(Common to PTEC 2303 – Computer Architecture and Organization for B.E. (Part-Time) Fourth Semester, Electronics and Communication Engineering Regulations 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is a bus? What are the different buses in a CPU?
- 2. Define PC relative and Base Relative addressing mode.
- 3. What is pipelining and state its advantages?
- 4. What is Ripple-Carry Adder (RCA)?
- Define superscalar processing.
- 6. What is meant by Nano programming?
- 7. What is translation look aside buffer?
- Comment on locality reference.
- 9. What is associative memory?
- 10. What is bus arbitration?

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	Explain the following addressing modes with an example and suggest thuses of those addressing modes:	
		(i) Register Indirect	
69		(ii) Auto increment	
		(iii) Indirect addressing	
		(iv) Base addressing	- 69
		(v) Indexed addressing.	
		Ox	
49 2	(b)	Explain in detail about the Accumulator based CPU organization with neat block diagram.	a 6)
12.	(a)	(i) Discuss the principle operation of carry-look ahead adders.	8)
		(ii) Discuss the non-restoring division algorithm. Simulate the same for 8/3.	or 8)
	(b)	Multiply the following pair of eigned nos. using Booth's bit-pair recoding of the Multiplier.	ìg
		A = -8 (Multiplicand) and $B = -8$ (Multiplier) (1	6)
13.	(a)	Explain the hardwired and micro programmed control systems. (1	.6)
		Or	
	(b)	 Explain the pipelining and hazards. List down and brief about the types of hazards with examples. 	he .0)
8.5		(ii) Explain about the various branch prediction techniques.	(6)
14.	(a)	(i) Explain in detail about the replacement policies of memo organization systems.	ory (8)
		(ii) Give the structure of semiconductor RAM memories. Explain t read and write operations in Details.	he (8)
		Or	
t	(b)	Explain in detail about the cache memory organization, cache operati and address mapping.	ion 16)

15.	(a)	(i)	(i) Explain in detail about the bus arbitration techniques in DMA. (8						
		(ii)	Explain the short not pipeline interrupts.	tes on	vector	interrupts,	PCI	interrupts	and (8)
		20	H (0.50	Or	100	10	3	20	
	(b)	Writ	e short notes on :		¥7.	ė			
		(i)	RISC Processors			100	775	476	(4)
		(ii)	CISC Processors					8	(4)
		(iii)	Superscaler Processor	8		15		69	(4)
		(iv)	Vector Processors.	99		100			(4)