
Re

Le Jem



## Question Paper Code: 21361

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Fifth Semester

Electronics and Communication Engineering

## EC 2301/EC 51 — DIGITAL COMMUNICATION

(Regulation 2008)

(Common to PTEC 2301 — Digital Communication for B.E. (Part-Time) Fourth Semester Electronics and Communication Engineering Regulation 2009)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

- State the advantages and disadvantage of digital communication systems over analog communication systems.
- State the classification of channels.
- State any two non-uniform quantisation rules.
- 4. What is natural sampling?
- State the significance of minimum distance of a block code.
- Define transparency of a line code. Give two examples of line codes which are not transparent.
- ISI can not be avoided. Justify the statement.
- State the principle of maximum likelihood detectors.
- 9. What is QAM?
- 10. What are coherent and non-coherent receivers?

11. (a) Explain any one analog pulse communication system.

Or

- (b) Discuss the characteristics of various discrete communication channels.
- (a) (i) Explain a PCM system. Derive the expression for quantisation noise of a PCM system with uniform quantizer.
  - (ii) Compare any two speech encoding techniques.

Or

- (b) Explain a
  - (i) Spectral waveform encoding.
  - (ii) Model based encoding.
- 13. (a) Explain Viterbi algorithm to decode a convolutionally coded message.

Or

- (b) Derive and draw the power spectra of a NRZ,
  - (i) Polar coded waveform
  - (ii) Bipolar coded waveform
- (a) Derive the expression for bit error probability of a binary signal detected with a matched filter.

Or

- (b) Derive and Explain the Nyquist first criterion to minimize ISI.
- 15. (a) Derive the expression for bit error probability of a QPSK system.

Or

- (b) Derive the expressions for bit error probability of a
  - (i) Coherent ASK system.
  - (ii) non-coherent FSK system.