	10.7							
	75	1000000	_			15-3	4	 1
D NT-							14	
Reg. No.:	100			100			1	
7109. 710								

Question Paper Code: 21773

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fourth Semester

Electronics and Communication Engineering

MA 2261/MA 45/MA 1253/080380009/10177 PR 401 — PROBABILITY AND RANDOM PROCESSES

(Common to Biomedical Engineering)

(Regulation 2008/2010)

Time: Three hours Maximum: 100 marks

(Use of Statistical tables is permitted)

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

1. The cummulative distribution function of the random variable X is given by

$$F_X(x) = \begin{cases} 0; \ x < 0 \\ x + \frac{1}{2}; \ 0 \le x \le \frac{1}{2}, \text{ compute } P \left[X > \frac{1}{4} \right]. \\ 1 \quad ; \quad x > \frac{1}{2} \end{cases}$$

2. Find the variance of the discrete random variable X with the probability mass

function
$$P_X(x) = \begin{cases} \frac{1}{3} & x = 0 \\ \frac{1}{3} & x = 2 \end{cases}$$

- If X,Y denote the deviation of variance from the arithmetic mean and if P=0.5, $\Sigma XY=120$, $\sigma=8$, $\Sigma X^2=90$. Find a number of times.
- For $\lambda > 0$, let $F(x,y) = \begin{pmatrix} 1 \lambda e^{-\lambda(x+y)}, & \text{if } x > 0, & y > 0 \\ 0, & \text{otherwise} \end{pmatrix}$ check whether F can be the joint probability distribution function of two random variables X and Y.

- 5. Define first-order stationary processes.
- 6. Suppose that X(t) is a Gaussian process with $\mu_X = 2$, $R_{XX} = (\tau) = 5e^{-0.2|\tau|}$, find the probability that $X(4) \le 1$.
- Prove that the auto correlation function is an even function of τ.
- 8. State Wiener-Khinchine theorem.
- 9. Check whether the system $Y(t) = X^{3}(t)$ is linear.
- 10. Compare band-limited white noise with ideal low-pass filtered white noise.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) The members of a girl scout troop are selling cookies from house to house in town. The probability that they sell a set of cookies at any house they visit is 0.4.
 - (1) If they visit 8 houses in one evening, what is the probability that they sold cookies to exactly five of these houses?
 - (2) If they visited 8 houses in one evening, what is the expected number of sets of cookies they sold?
 - (3) What is the probability that they sold their set of cookies atmost in the sixth house they visited? (8)
 - Suppose X has an exponential distribution with mean equal to 10.
 Find the value of x such that P(x < x) = 0.95.

Or

- (b) (i) If the moments of a random variable X are defined by $E(X^r) = 0.6$, r = 1, 2... Show that P(X = 0) = 0.4, P(X = 1) = 0.6 and $P(X \ge 2) = 0$.
 - (ii) Find the probability density function of the random variable y = x²
 where X is the standard normal variate.
- 12. (a) (i) The joint PMF of two random variables X and Y is given by $P_{\mathbf{X},\mathbf{Y},\mathbf{Y}} = \begin{cases} K(2x+y) \ x=1,2; \ y=1,2\\ 0 \end{cases}$, where K is a constant
 - (1) Find K
 - (2) Find the marginal PMFs of X and Y. (8)

(ii) Assume that the random variable S_n is the sum of 48 independent experimental values of the random variable X whose PDF is given by $f_X(x) = \begin{cases} \frac{1}{3} & 1 \le x \le 4 \\ 0 & otherwise \end{cases}$. Find the probability that S_n lies in the range $108 \le S_n \le 126$.

On

- (b) (i) Two random variables X and Y are related as Y = 4X + 9. Find the correlation coefficient between X and Y.
 (8)
 - (ii) If the density function is defined by $f(x,y) = \frac{y}{(1+x)^4}e^{\frac{-y}{1+x}}$, $x \ge 0, y \ge 0$ then obtain the regression equation of Y on X for the distribution.
- 13. (a) (i) Show that the random process $X(t) = A\cos(\omega_0 t + \theta)$ is wide sense stationary where A and ω_0 are constants and θ is a uniformly distributed random variable in $(0, 2\pi)$.
 - (ii) For the random process $X(t) = A\cos\omega t + B\sin\omega t$ where A and B are random variables with E(A) = E(B) = 0, $E(A^2) = E(B^2) > 0$ and E(AB) = 0. Prove that the process is mean Ergodic. (8)

Or

- (b) (i) Two boys B₁, B₂ and 2 girls G₁, G₂ are throwing a ball from one to another. Each boy throws the ball to other boy with probability 1/2 and to each girl with probability 1/4. On the other hand, each girl throws the ball to each boy with probability 1/2 and never to the other girl. In the long run, how does each receive the ball? (8)
 - (ii) If $\{X(t)\}$ is a Poisson process, then prove that correlation coefficient between X(t) and X(t+s) is $\sqrt{\frac{t}{t+s}}$. (8)
- 14. (a) (i) Find the spectral density of a WSS random process $\{X(t)\}$ whose auto correlation function is $e^{\frac{-a^2t^2}{2}}$. (8)
 - (ii) Find the auto correlation function of the WSS process $\{X(t)\}$ whose spectral density is given by $S(\omega) = \frac{1}{\left(1 + \omega^2\right)^2}$. (8)

Or

- (b) (i) The cross-power spectrum of real random process $\{X(t)\}$ and $\{Y(t)\}$ is given by $S_{XY}(\omega) = \begin{cases} a+jb\omega, & |\omega|<1\\ 0 & elsewhere \end{cases}$. Find the cross-correlation function.
 - (ii) Determine the cross correlation function corresponding to the cross-power density spectrum $S_{XY}(\omega) = \frac{8}{(\alpha + j\omega)^3}$, where $\alpha > 0$ is a constant.
- 15. (a) (i) If the output of the input X(t) is defined as $Y(t) = \frac{1}{T} \int_{t-T}^{T} X(s) ds$, prove that X(t) and Y(t) are related by means of convolution integral. Find the unit impulse response of the system. (8)
 - (ii) A circuit has an impulse response given by $h(t) = \begin{cases} \frac{1}{T}, 0 \le t \le T \\ 0 & otherwise \end{cases}$ Evaluate $S_{YY}(\omega)$ in terms of $S_{XX}(\omega)$.

0=

- (b) (i) Given that $y(t) = \frac{1}{2 \in \int_{t-\epsilon}^{1+\epsilon} X(\alpha) d\alpha}$ where $\{Y(t)\}$ is a WSS process, prove that $S_{YY}(\omega) = \frac{\sin^2 \epsilon \omega}{\epsilon^2 \omega^2} S_{XX}(\omega)$. Find the output auto correlation function. (8)
 - (ii) A linear time invariant system has an impulse response $h(t) = e^{-\beta t} \omega(t)$. Find the output auto correlation function $R_{\gamma\gamma}(\tau)$ corresponding to an input X(t).