			HALLEY OF		The state of	
Reg. No.:						

Question Paper Code: 71444

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2015.

Third Semester

Electronics and Communication Engineering

EC 2203/EC 34/080290010/10144 EC 304 — DIGITAL ELECTRONICS

(Regulation 2008/2010)

(Common to PTEC 2203 – Digital Electronics for B.E. (Part-Time) Third Semester – Electronics and Communication Engineering Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- Define 'min term' and 'max term'.
- 2. Write a note on tristate gates.
- 3. Give the logic expressions for sum and carry in full adder circuit.
- 4. Give examples for combinational circuit (any four).
- 5. Realize T FF and JK FF.
- 6. Draw the circuit diagram of a 3 bit Ring counter.
- 7. Compare static and dynamic RAM cell (any two).
- 8. $Y = A\overline{B} + \overline{A}$. Implement using ROM.
- 9. Differentiate flow chart and ASM chart.
- 10. List the problems that arise in asynchronous circuits.

11.	(a)	(1)	Simplify $T(x, y, z) = (x + y)[x(y + z)] + xy + xz$. (6)
		(ii)	Simplify the Boolean function and draw the logic diagram $f(w,x,y,z) = \Sigma(0,1,2,4,5,6,8,9,12,13,14)$. (10)
			Or
	(b)	(i) (ii)	Realize AND, OR and NOT gates using NAND gate. (6) Using tabulation method simplify
			$F(A, B, C, D, E) = \Sigma(0, 1, 4, 5, 16, 17, 21, 25, 29). \tag{10}$
12.	(a)		gn a combinational circuit that converts 4 bit Gray Code to a 4 bit ry number. Implement the circuit.
			Or
	(b)	Deta	il the following:
		(i)	BCD adder. (8)
		(ii)	Magnitude comparator. (8)
13.	(a)	(i)	Describe a JK FF with its characteristic table and characteristic equation. (6)
		(ii)	With a neat sketch describe a 3 bit synchronous up/down counter. Draw the timing waveform. (10)
			Or
	(b)	Whe	gn a sequential circuit with two D FFs A and B and one input x . n $x=0$, the state of the circuit remains the same. When $x=1$, the uit gas through the state transitions from $00-01-11-10-00-01$
14.	(a)	(i)	List the steps involved in memory read and memory write operations. (10)
		(ii)	Give an account for classification of memories. (6)
			Or
	(b)		ain the structure of PAL and PLA. How a combinational logic tion is implemented in PAL and PLA? Explain with an example for (16)
15.	(a)	(i)	Write the VERILOG code for full adder and JK FF. (8)
		(ii)	Explain the different types of hazards. Design a hazard free circuit for $y = x_1x_2 + x_2' x_3$. (8)
			Or
	(b)	Witl	a ASM chart design a binary multiplier. (16)