

Question Paper Code: 51444

B.E. /B. Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Third Semester

Electronics and Communication Engineering EC 2203/EC 34/080290010/10144 EC 304 – DIGITAL ELECTRONICS

(Regulations 2008/2010)

(Common to PTEC 2203 – Digital Electronics for B.E. (Part-Time) Third Semester – Electronics and Communication Engineering Regulations 2009)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

- 1. Simplify $f(x, y) = x^{y} + xy + xy'$.
- 2. Implement EXOR function using NAND gates only.
- Design a Half Subtractor.
- 4. What is a parity bit? Give the odd parity and even parity bits for the data 10.
- State the difference between edge triggering and level triggering.
- Give one application of a ring counter.
- 7. What is an EEPROM?
- 8. State the difference between PAL and PLA.
- 9. What is a pulse mode asynchronous sequential circuit?
- 10. What are the parts of a module in verilog?

$PART - B (5 \times 16 = 80 Marks)$

11.	(a)	(i)	State and prove consensus theorem.	(6)
		(ii)	Minimize the following function using Karnaugh Map:	(10)
			$f(A, B, C, D, E) = \Sigma m(0, 2, 5, 6, 8, 11, 12, 13, 16, 18, 20, 28, 30, 31)$	
			OR	
	(b)	(i)	State and prove De Morgan's theorem.	(6)
		(ii)	Minimize the following function using Quine Mc Cluskey Method.	(10)
			$f(A, B, C, D, E) = \Sigma m (0, 1, 3, 5, 6, 7, 9, 10, 12, 13, 17, 19, 20, 25, 26, 29, 30)$	
12.	(a)	(i)	Design and explain the operation of a Carry Look-ahead adder.	(8)
		(ii)	Design a 3 × 3 Binary (Array) Multiplier.	(8)
			OR	
	(b)	(i)	Explain the operation of a 8 ×1 Multiplexer and Implement the following	3
			function using a suitable Multiplexer	(8)
			$F(A, B, C, D) = \Sigma m (0, 1, 3, 5, 6, 7, 8, 9, 11, 13, 14)$	
		(ii)	Design a magnitude comparator to compare two 3-bit numbers :	8
			$A = A_2 A_1 A_0 \text{ and } B = B_2 B_1 B_0$	
13.	(a)	With	h logic diagram, characteristic table and characteristic equation explain th	e
		oper	ration of a	
		(i)	D Flip-Flop	(5)
		(ii)	T Flip-Flop	(5)
		(iii)	JK Flip-Flop	(6)
			OR AND MARKET AND	
	(b)	(i)	Design a 3-bit synchronous up/down Modulo 5 counter.	(8)
		(ii)	With neat sketch, explain the operation of a 3-bit universal shift register.	(8)
				51441

	14.	(a)	(1)	With timing waveforms, explain the memory read/write operation.	(0)		
			(ii)	What is memory expansion? Explain.	(8)		
				OR			
		(b)	(i)	Design a 3 × 8 decoder and Implement it using a suitable PLA.	(8)		
			(ii)	Design a 3-bit majority logic circuit and Implement it using a suitable PAL.	(8)		
	15.	(a)	Design a sequence detector to detect the sequence 1010. Use the Algorithmic				
		3.5		Machine (ASM) Chart for the design.	(16)		
				OR			
		(b)	(i)	What is an incompletely specified state machine? Explain.	(8)		
			(ii)	Write the verilog code to realize a Full Adder using structural Modelling (Module instantiation).	(8)		