Reg. No.:			

Question Paper Code: 21354

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Third Semester

Electronics and Communication Engineering

EC 2204/EC 35/EC 1202 A/10144 EC 305/080290015 - SIGNALS AND SYSTEMS

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Check whether the discrete time signal Sin3n is periodic.
- 2. Define a random signal.
- 3. State the time scaling property of Laplace transform.
- 4. What is the fourier transform of a DC signal of amplitude 1?
- Define the convolutional integral.
- 6. What is the condition for a LTI system to be stable?
- 7. What is the z transform of $\delta(n+k)$?
- 8. What is aliasing?
- Is the discrete time system described by the difference equation y(n) = x(-n) causal.
- 10. If $X(\omega)$ is the DTFT of x(n), what is the DTFT of $x^*(-n)$?

PART B - (5 × 16 = 80 marks)

11. (a) (i) Define an energy and power signal.

(4)

 (ii) Determine whether the following signals are energy or power and calculate their energy or power.

(1)
$$x(n) = \left(\frac{1}{2}\right)^n u(n)$$
. (4)

(2)
$$x(t) = rect\left(\frac{t}{T_o}\right)$$
. (4)

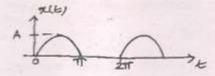
(3)
$$x(t) = \cos^2(\omega_o t)$$
. (4)

O

- (b) (i) Define unit step, Ramp, Pulse, Impulse and exponential signals. Obtain the relationship between the unit step function and unit ramp function. (10)
 - (ii) Find the fundamental period T of the signal $x(n) = \cos(n\pi/2) \sin(n\pi/8) + 3\cos(n\pi/4 + \pi/3). \tag{6}$
- 12. (a) (i) Compute the Laplace transform of $x(t) = e^{-b|x|}$ for the cases of b < 0 and b > 0. (10)
 - (ii) State and prove Parseval's theorem of Fourier transform. (6)

Or

(b) (i) Determine the Fourier series representation of the half wave rectifier output shown in figure below. (8)



- (ii) Write the properties of ROC of laplace transform. (8)
- 13. (a) (i) Determine the impulse response h(t) of the system given by the differential equation $\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t)$

with all initial conditions to be zero. (8)

(ii) Obtain the direct form I realization of

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 4y(t) = \frac{dx(t)}{dt},$$
(8)

Or

(b) The system produces the output $y(t) = e^{-t}u(t)$ for an input $x(t) = e^{-2t}u(t)$.

Determine

- (i) frequency response
- (ii) magnitude and phase of the response
- (iii) the impulse response.

(16)

- 14. (a) (i) Determine the Z transform of $x(n) = a^n \cos(\omega_0 n)u(n)$. (8)
 - (ii) Determine the inverse Z transform of $X(z) = \frac{1}{1 1.5z^{-1} + 0.5z^{-2}}$ for ROC|Z| > 1. (8)

Or

- (b) (i) State and prove the time shift and frequency shift property of DTFT. (8)
 - (ii) Determine the DTFT of $\left(\frac{1}{2}\right)^n u(n)$. Plot its spectrum.
- 15. (a) (i) Obtain the impulse response of the system given by the difference equation $y(n) \frac{5}{6}y(n-1) + \frac{1}{6}y(n-2) = x(n)$. (10)
 - (ii) Determine the range of values of the parameter "a" for which the LTI system with impulse response $h(n) = a^n u(n)$ is stable. (6)

Or

(b) Compute the response of the system

$$y(n) = 0.7y(n-1) - 0.12y(n-2) + x(n-1) + x(n-2)$$
 to the input $x(n) = n u(n)$. Is the System stable? (16)