

Question Paper Code: 11485

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2012.

Third Semester

Civil Engineering

MA 2211/MA 31/MA 1201 A/CK 201/10177 MA 301/080100008/080210001/MAU 211/ETMA 9211 — TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to all branches) (Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Find the co-efficient b_n of the Fourier series for the function $f(x) = x \sin x$ in (-2, 2).
- 2. Define Root Mean Square value of a function f(x) over the interval (a, b).
- 3. Find the Fourier transform of $e^{-\alpha|x|}$, $\alpha > 0$.
- 4. State convolution theorem in Fourier transform.
- 5. Eliminate the arbitrary function 'f from $z = f\left(\frac{y}{x}\right)$ and form the PDE.
- 6. Solve: (D-1)(D-D'+1)z=0.
- 7. An insulated rod of length 60 cm has its ends at *A* and *B* maintained at 20°C and 80°C respectively. Find the steady state solution of the rod.
- 8. A plate is bounded by the lines x=0, y=0, x=l and y=l. Its faces are insulated. The edge coinciding with x-axis is kept at 100°C. The edge coinciding with y-axis is kept at 50°C. The other two edges are kept at 0°C. Write the boundary conditions that are needed for solving two dimensional heat flow equation.
- 9. Find the Z-transform of a^n .
- 10. Solve $y_{n+1} 2y_n = 0$, given that y(0) = 2.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Find the Fourier series expansion of $f(x) = x + x^2$ in $(-\pi, \pi)$. (8)
 - (ii) Find the Fourier series expansion of $f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2-x, & 1 \le x \le 2 \end{cases}$. Also

deduce
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$$
 to $\infty = \frac{\pi^2}{8}$. (8)

- (b) (i) Obtain the half range cosine series for f(x) = x in $(0, \pi)$. (8)
 - (ii) Find the Fourier series as far as the second harmonic to represent the function f(x) with period 6, given in the following table: (8)

12. (a)	(i)	Find the Fourier transform of $f(x) = \begin{cases} 1 - x & \text{if } x < 1 \\ 0 & \text{if } x > 1 \end{cases}$	and hence
		evaluate $\int_{0}^{\infty} \frac{\sin^4 t}{t^4} dt$.	(8)

(ii) Find the Fourier transform of
$$f(x) = \begin{cases} a^2 - x^2, & |x| \le a \\ 0, & |x| > a > 0 \end{cases}$$
. Hence

deduce that
$$\int_{0}^{\infty} \frac{\sin t - t \cos t}{t^3} dt = \frac{\pi}{4}.$$
 (8)

(b) (i) Find the Fourier cosine and sine transforms of $f(x) = e^{-ax}$, a > 0 and hence deduce the inversion formula. (8)

(ii) Find the Fourier cosine transform of $e^{-a^2x^2}$, $\alpha > 0$. Hence show that the function $e^{-x^2/2}$ is self-reciprocal. (8)

13. (a) (i) Find the singular integral of $z = px + qy + p^2 + pq + q^2$. (8)

(ii) Solve the partial differential equation (x-2z) p + (2z-y) q = y-x. (8)

Or

(b) (i) Solve:
$$(D^2 + 3DD' - 4D'^2)z = \cos(2x + y) + xy$$
. (8)

(ii) Solve:
$$(D^2 - DD' + 2D)z = e^{2x+y} + 4$$
. (8)

14. (a) A tightly stretched string with fixed end points x=0 and x=l is initially in a position given by $y(x,0)=y_0\sin^3\left(\frac{\pi\,x}{l}\right)$. It is released from rest from this position. Find the expression for the displacement at any time t.

Or

(b) Find the steady state temperature distribution in a rectangular plate of sides a and b insulated at the lateral surfaces and satisfying the boundary conditions:

u(0, y) = u(a, y) = 0, for $0 \le y \le b$; u(x, b) = 0 and u(x, 0) = x(a - x), for $0 \le x \le a$.

 $u(x, b) = 0 \text{ and } u(x, 0) = x(a - x), \text{ for } 0 \le x \le a.$ (16)15. (a) (i) Find the Z-transforms of $\sin^2\left(\frac{n\pi}{4}\right)$ and $\cos\left(\frac{n\pi}{2} + \frac{n\pi}{4}\right)$. (8)

(ii) Using convolution theorem, find the inverse Z-transform of $\frac{z^2}{\sqrt{z^2}}$.

Or

(b) (i) Solve the difference equation using Z-transform $y_{(n+3)}-3\,y_{(n+1)}+2\,y_{(n)}=0 \ \ \text{given that} \ \ y_0=4\;,\; y_1=0\;,\; y_2=8\;. \eqno(8)$

(ii) Solve $y_{(n+2)} + 6y_{(n+1)} + 9y_{(n)} = 2^n$ given that $y_0 = y_1 = 0$. (8)