	 -		_		
Reg. No.:					

Question Paper Code: 21443

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Third Semester

Electronics and Communication Engineering

EC 2202/EC 33/080290009/10144 EC 303 — DATA STRUCTURES AND OBJECT ORIENTED PROGRAMMING IN C++

(Regulations 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- How to create symbolic constants in C++?
- 2. Define destructors with syntax.
- 3. What is the need to declare base classes as virtual?
- 4. What is the use of virtual functions in C++?
- 5. What are the limitations of linear queues? How are they overcome using circular queues?
- 6. What is meant by underflow and overflow condition in a stack?
- 7. Why is always a red node inserted into a red-black-tree?
- Does the minimum spanning tree of a graph give the shortest distance between any two specific nodes? Justify your answer.
- 9. Sort the numbers 34, 12, 25, 14 using merge sorting technique.
- 10. What is meant by dynamic programming?

PART B — $(5 \times 16 = 80 \text{ marks})$

		-	3 3 . 0.13	
11. (a)			lain the following:	
		(i)	Comparison of conventional programming and OOPS	(6)
		(ii)	Operator overloading.	(6)
		(iii)	Constructors and destructors.	(4)
			Or	
	(b)	(i)	Explain the control structures of C++ with suitable examples.	(12)
		(ii)	Define function over-loading with a simple example.	(4)
12.	(a)	(i)	Derive inheritance for insurance policies.	(8)
		(ii)	Give the structure form of scope rules for public, private	
			protected access to superclass and subclass members and object	ts. (8)
			Or	
	(b)	(i)	Explain polymorphism with an example.	(8)
		(ii)	List and brief different string handling techniques.	(8)
13.	(a)	(i)	Explain why algorithm having exponential time complexity ar	e not
	200	0.55	preferred.	(8)
		(ii)	With a simple program, explain various operations of linked lis	t. (8)
			Or	
	(b)	(i)	Consider the array Heap = [3, 5, 6, 7, 20, 8, 12, 9, 15, 17]	
			Consider an empty heap. Construct a MAX HEAP while inse	
		(22)	these values one of one. Display the heap after each insertion.	(10)
		(ii)	Discuss the stack and its operations.	(6)
14.	(a)	Expl	lain the process of inserting and deleting an element in the AVI	tree
			an example.	(16)
			Or	
,	(b)	Wha	t is a minimum spanning tree? Explain any one algorithm	n for
			tructing a minimum spanning tree with an example	(16)
15.	(a)	(i)	Illustrate inserting an element into a heap with the follo	wing
	10000		numbers 10, 7, 21, 3, 5.	(8)
*		(ii)	Explain the stages of heap sort.	(8)
			Or	

2

Explain how divide and conquer is applied to merge sort. Trace the algorithm for the following set of data 25, 0, 8, 78, 6, 34, 56, 90, 100. (16)