CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

OBJECTIVES:

- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by viscometery.
 - 1. Estimation of HCl using Na₂CO₃ as primary standard and Determination of alkalinity in water sample.
 - 2. Determination of total, temporary & permanent hardness of water by EDTA method.
 - 3. Determination of DO content of water sample by Winkler's method.
 - 4. Determination of chloride content of water sample by argentometric method.
 - 5. Estimation of copper content of the given solution by lodometry.
 - 6. Determination of strength of given hydrochloric acid using pH meter.
 - 7. Determination of strength of acids in a mixture of acids using conductivity meter.
 - 8. Estimation of iron content of the given solution using potentiometer.
 - 9. Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthroline / thiocyanate method).
 - 10. Estimation of sodium and potassium present in water using flame photometer.
 - 11. Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer.
 - 12. Pseudo first order kinetics-ester hydrolysis.
 - 13. Corrosion experiment-weight loss method.
 - 14. Determination of CMC.
 - 15. Phase change in a solid.
 - 16. Conductometric titration of strong acid vs strong base.

OUTCOMES:

 The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters.

TEXTBOOKS:

1. Vogel's Textbook of Quantitative Chemical Analysis (8TH edition, 2014)

	L	Т	Ρ	С
TECHNICAL ENGLISH	4	0	0	4

TOTAL: 30 PERIODS

OBJECTIVES:

HS8251

- The Course prepares second semester engineering and Technology students to:
- Develop strategies and skills to enhance their ability to read and comprehend engineering and technology texts.
- Foster their ability to write convincing job applications and effective reports.
- Develop their speaking skills to make technical presentations, participate in group discussions.
- Strengthen their listening skill which will help them comprehend lectures and talks in their areas of specialisation.

UNIT I INTRODUCTION TECHNICAL ENGLISH

Listening- Listening to talks mostly of a scientific/technical nature and completing information-gap exercises- Speaking -Asking for and giving directions- Reading - reading short technical texts from iournals- newsapapers-Writing- purpose statements - extended definitions - issue- writing instructions - checklists-recommendations-Vocabulary Development- technical vocabulary Language Development -- subject verb agreement - compound words.

UNIT II **READING AND STUDY SKILLS**

Listening- Listening to longer technical talks and completing exercises based on them-Speaking describing a process-Reading - reading longer technical texts- identifying the various transitions in a text- paragraphing- Writing- interpreting cgarts, graphs- Vocabulary Development-vocabularyused in formal letters/emails and reports Language Development- impersonal passive voice, numerical adjectives.

UNIT III **TECHNICAL WRITING AND GRAMMAR**

Listening- Listening to classroom lectures/ talkls on engineering/technology -Speaking - introduction to technical presentations-Reading - longer texts both general and technical, practice in speed reading; Writing-Describing a process, use of sequence words- Vocabulary Development- sequence words- Misspelled words. Language Development- embedded sentences

UNIT IV REPORT WRITING

Listening- Listening to documentaries and making notes. Speaking - mechanics of presentations-Reading - reading for detailed comprehension- Writing- email etiquette- job application - cover letter -Résumé preparation(via email and hard copy)- analytical essays and issue based essays--Vocabulary Development- finding suitable synonyms-paraphrasing-. Language Developmentclauses- if conditionals.

UNIT V

GROUP DISCUSSION AND JOB APPLICATIONS

Listening- TED/Ink talks; Speaking -participating in a group discussion -Reading- reading and understanding technical articles Writing-Writing reports- minutes of a meeting- accident and survey-Vocabulary Development- verbal analogies Language Development- reported speech

TOTAL : 60 PERIODS

OUTCOMES: At the end of the course learners will be able to:

- Read technical texts and write area- specific texts effortlessly. •
- Listen and comprehend lectures and talks in their area of specialisation successfully.
- Speak appropriately and effectively in varied formal and informal contexts.
- Write reports and winning job applications.

TEXT BOOKS:

- Board of editors. Fluency in English A Course book for Engineering and Technology. Orient 1. Blackswan, Hyderabad: 2016
- Sudharshana.N.P and Saveetha. C. English for Technical Communication. Cambridge 2. University Press: New Delhi, 2016.

REFERENCES

- Raman, Meenakshi and Sharma, Sangeetha- Technical Communication Principles and 1. Practice.Oxford University Press: New Delhi,2014.
- 2. Kumar, Suresh. E. Engineering English. Orient Blackswan: Hyderabad, 2015
- Booth-L. Diana, Project Work, Oxford University Press, Oxford: 2014. 3
- Grussendorf, Marion, English for Presentations, Oxford University Press, Oxford: 2007 4.
- Means, L. Thomas and Elaine Langlois, English & Communication For Colleges. Cengage 5. Learning, USA: 2007

Students can be asked to read Tagore, Chetan Bhagat and for supplementary reading.

12

12

12

12

27

Laplace transform and inverse transform of simple functions, properties, various related

and Laplace Transform. Matrix Algebra is one of the powerful tools to handle practical problems arising in the field of engineering. Vector calculus can be widely used for modelling the various laws of

solving the problems that occur in various branches of engineering disciplines.

UNIT I MATRICES

MA8251

OBJECTIVES:

Eigen values and Eigenvectors of a real matrix – Characteristic equation – Properties of Eigen values and Eigenvectors - Cayley-Hamilton theorem - Diagonalization of matrices - Reduction of a quadratic form to canonical form by orthogonal transformation - Nature of quadratic forms.

ENGINEERING MATHEMATICS – II

This course is designed to cover topics such as Matrix Algebra, Vector Calculus, Complex Analysis

UNIT II **VECTOR CALCULUS**

Gradient and directional derivative - Divergence and curl - Vector identities - Irrotational and Solenoidal vector fields - Line integral over a plane curve - Surface integral - Area of a curved surface - Volume integral - Green's, Gauss divergence and Stoke's theorems - Verification and application in evaluating line, surface and volume integrals.

UNIT III **ANALYTIC FUNCTIONS**

Analytic functions - Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties - Harmonic conjugates - Construction of analytic function - Conformal

mapping – Mapping by functions w = z + c, $cz, \frac{1}{z}, z^2$ - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION

Line integral - Cauchy's integral theorem - Cauchy's integral formula - Taylor's and Laurent's series - Singularities - Residues - Residue theorem - Application of residue theorem for evaluation of real integrals – Use of circular contour and semicircular contour.

UNIT V LAPLACE TRANSFORMS

Existence conditions - Transforms of elementary functions - Transform of unit step function and unit impulse function - Basic properties - Shifting theorems -Transforms of derivatives and integrals -Initial and final value theorems - Inverse transforms - Convolution theorem - Transform of periodic functions - Application to solution of linear second order ordinary differential equations with constant coefficients.

OUTCOMES:

After successfully completing the course, the student will have a good understanding of the following topics and their applications:

- Eigen values and eigenvectors, diagonalization of a matrix, Symmetric matrices, Positive definite matrices and similar matrices.
- Gradient, divergence and curl of a vector point function and related identities.
- Evaluation of line, surface and volume integrals using Gauss, Stokes and Green's theorems and their verification.
- Analytic functions, conformal mapping and complex integration.
- theorems and application to differential equations with constant coefficients.

т Λ

12

12

12

С

12

TOTAL: 60 PERIODS

TEXT BOOKS :

- 1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.
- 2. Kreyszig Erwin, "Advanced Engineering Mathematics ", John Wiley and Sons, 10th Edition, New Delhi, 2016.

REFERENCES:

- 1. Bali N., Goyal M. and Watkins C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- 2. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics ", Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. O'Neil, P.V. "Advanced Engineering Mathematics", Cengage Learning India Pvt., Ltd, New Delhi, 2007.
- 4. Sastry, S.S, "Engineering Mathematics", Vol. I & II, PHI Learning Pvt. Ltd, 4th Edition, New Delhi, 2014.
- 5. Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

PH8251

MATERIALS SCIENCE (Common to courses offered in Faculty of Mechanical L T P C 3 0 0 3

Engineering Except B.E. Materials Science and Engineering)

OBJECTIVES:

 To introduce the essential principles of materials science for mechanical and related engineering applications.

UNIT I PHASE DIAGRAMS

Solid solutions - Hume Rothery's rules – the phase rule - single component system - one-component system of iron - binary phase diagrams - isomorphous systems - the tie-line rule - the lever rule - application to isomorphous system - eutectic phase diagram - peritectic phase diagram - other invariant reactions – free energy composition curves for binary systems - microstructural change during cooling.

UNIT II FERROUS ALLOYS

The iron-carbon equilibrium diagram - phases, invariant reactions - microstructure of slowly cooled steels - eutectoid steel, hypo and hypereutectoid steels - effect of alloying elements on the Fe-C system - diffusion in solids - Fick's laws - phase transformations - T-T-T-diagram for eutectoid steel – pearlitic, baintic and martensitic transformations - tempering of martensite – steels – stainless steels – cast irons.

UNIT III MECHANICAL PROPERTIES

Tensile test - plastic deformation mechanisms - slip and twinning - role of dislocations in slip - strengthening methods - strain hardening - refinement of the grain size - solid solution strengthening - precipitation hardening - creep resistance - creep curves - mechanisms of creep - creep-resistant materials - fracture - the Griffith criterion - critical stress intensity factor and its determination - fatigue failure - fatigue tests - methods of increasing fatigue life - hardness - Rockwell and Brinell hardness - Knoop and Vickers microhardness.

9

9

UNIT IV MAGNETIC, DIELECTRIC AND SUPERCONDUCTING MATERIALS

Ferromagnetism – domain theory – types of energy – hysteresis – hard and soft magnetic materials – ferrites - dielectric materials – types of polarization – Langevin-Debye equation – frequency effects on polarization - dielectric breakdown – insulating materials – Ferroelectric materials - superconducting materials and their properties.

UNIT V NEW MATERIALS

Ceramics – types and applications – composites: classification, role of matrix and reinforcement, processing of fiber reinforced plastics – metallic glasses: types, glass forming ability of alloys, melt spinning process, applications - shape memory alloys: phases, shape memory effect, pseudoelastic effect, NiTi alloy, applications – nanomaterials: preparation (bottom up and top down approaches), properties and applications – carbon nanotubes: types.

TOTAL : 45 PERIODS

OUTCOMES:

Upon completion of this course,

- the students will have knowledge on the various phase diagrams and their applications
- the students will acquire knowledge on Fe-Fe₃C phase diagram, various microstructures and alloys
- the students will get knowledge on mechanical properties of materials and their measurement
- the students will gain knowledge on magnetic, dielectric and superconducting properties of materials
- the students will understand the basics of ceramics, composites and nanomaterials.

TEXT BOOKS:

- 1. Balasubramaniam, R. "Callister's Materials Science and Engineering". Wiley India Pvt. Ltd., 2014.
- 2. Raghavan, V. "Physical Metallurgy: Principles and Practice". PHI Learning, 2015.
- 3. Raghavan, V. "Materials Science and Engineering : A First course". PHI Learning, 2015.

REFERENCES

- 1. Askeland, D. "Materials Science and Engineering". Brooks/Cole, 2010.
- 2. Smith, W.F., Hashemi, J. & Prakash, R. "Materials Science and Engineering". Tata McGraw Hill Education Pvt. Ltd., 2014.
- 3. Wahab, M.A. "Solid State Physics: Structure and Properties of Materials". Narosa Publishing House, 2009.

BE8253BASIC ELECTRICAL, ELECTRONICS AND INSTRUMENTATIONL T P CENGINEERING3 0 0 3

OBJECTIVES:

To impart knowledge on

- Electric circuit laws, single and three phase circuits and wiring
- Working principles of Electrical Machines
- · Working principle of Various electronic devices and measuring instruments

9

UNIT I **ELECTRICAL CIRCUITS**

Basic circuit components -, Ohms Law - Kirchoff's Law - Instantaneous Power - Inductors -Capacitors - Independent and Dependent Sources - steady state solution of DC circuits - Nodal analysis, Mesh analysis- Thevinin's Theorem, Norton's Theorem, Maximum Power transfer theorem-Linearity and Superposition Theorem.

UNIT II **AC CIRCUITS**

Introduction to AC circuits - waveforms and RMS value - power and power factor, single phase and three-phase balanced circuits - Three phase loads - housing wiring, industrial wiring, materials of wiring

UNIT III **ELECTRICAL MACHINES**

Principles of operation and characteristics of ; DC machines, Transformers (single and three phase) ,Synchronous machines, three phase and single phase induction motors.

UNIT IV ELECTRONIC DEVICES & CIRCUITS

Types of Materials – Silicon & Germanium- N type and P type materials – PN Junction – Forward and Reverse Bias -Semiconductor Diodes -Bipolar Junction Transistor - Characteristics --Field Effect Transistors - Transistor Biasing -Introduction to operational Amplifier -Inverting Amplifier -Non Inverting Amplifier – DAC – ADC .

UNIT V **MEASUREMENTS & INSTRUMENTATION**

Introduction to transducers - Classification of Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect and Mechanical -, Classification of instruments - Types of indicating Instruments - multimeters -Oscilloscopes- - three-phase power measurementsinstrument transformers (CT and PT)

OUTCOMES:

Ability to

- Understand electric circuits and working principles of electrical machines •
- Understand the concepts of various electronic devices
- Choose appropriate instruments for electrical measurement for a specific application

TEXT BOOKS

- 1. Leonard S Bobrow, "Foundations of Electrical Engineering", Oxford University Press, 2013
- 2. D P Kothari and I.J Nagarath, "Electrical Machines "Basic Electrical and Electronics Engineering", McGraw Hill Education (India) Private Limited, Third Reprint, 2016
- 3. Thereja .B.L., "Fundamentals of Electrical Engineering and Electronics", S. Chand & Co. Ltd., 2008

REFERENCES

- 1. Del Toro, "Electrical Engineering Fundamentals", Pearson Education, New Delhi, 2007
- 2. John Bird, "Electrical Circuit Theory and Technology", Elsevier, First Indian Edition, 2006
- 3. Allan S Moris, "Measurement and Instrumentation Principles", Elseveir, First Indian Edition, 2006
- 4. Rajendra Prasad, "Fundamentals of Electrical Engineering", Prentice Hall of India, 2006
- 5. A.E.Fitzgerald, David E Higginbotham and Arvin Grabel, "Basic Electrical Engineering", McGraw Hill Education(India) Private Limited, 2009
- 6. N K De, Dipu Sarkar, "Basic Electrical Engineering", Universities Press (India) Private Limited 2016

9

9

9

9

GE8291 ENVIRONMENTAL SCIENCE AND ENGINEERING

L T P C 3 0 0 3

14

OBJECTIVES:

- To study the nature and facts about environment.
- To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth's interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY

Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds; Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – solid waste management: causes, effects and control measures of municipal solid wastes – role of an individual in prevention of pollution – pollution case studies – disaster management: floods, earthquake, cyclone and landslides. Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over- utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns, case studies – role of non-governmental organization-environmental ethics: Issues and possible solutions – climate change, global warming, acid rain,

8

10

ozone layer depletion, nuclear accidents and holocaust, case studies. - wasteland reclamation consumerism and waste products - environment production act - Air (Prevention and Control of Pollution) act - Water (Prevention and control of Pollution) act - Wildlife protection act - Forest conservation act - enforcement machinery involved in environmental legislation- central and state pollution control boards- Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

6 Population growth, variation among nations - population explosion - family welfare programme environment and human health - human rights - value education - HIV / AIDS - women and child

welfare - role of information technology in environment and human health - Case studies.

TOTAL: 45 PERIODS

- Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.
- Public awareness of environmental is at infant stage. •
- Ignorance and incomplete knowledge has lead to misconceptions
- Development and improvement in std. of living has lead to serious environmental disasters

TEXTBOOKS:

OUTCOMES:

- 1. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2006.
- 2. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.

REFERENCES:

- Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT LTD,New Delhi, 2007.
 Erach Bharucha, "Textbook of Environmental Studies", Universities Press(I) PVT, LTD, Hydrabad, 2015.
- 3. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 2005.
- 4. G. Tyler Miller and Scott E. Spoolman, "Environmental Science", Cengage Learning India PVT, LTD, Delhi, 2014.

ENGINEERING MECHANICS

OBJECTIVES:

To develop capacity to predict the effect of force and motion in the course of carrying out the design functions of engineering.

UNIT I **STATICS OF PARTICLES**

Introduction - Units and Dimensions - Laws of Mechanics - Lami's theorem, Parallelogram and triangular Law of forces – Vectorial representation of forces – Vector operations of forces -additions, subtraction, dot product, cross product - Coplanar Forces - rectangular components - Equilibrium of a particle - Forces in space - Equilibrium of a particle in space - Equivalent systems of forces -Principle of transmissibility .

EQUILIBRIUM OF RIGID BODIES UNIT II

Free body diagram - Types of supports - Action and reaction forces - stable equilibrium - Moments and Couples - Moment of a force about a point and about an axis - Vectorial representation of moments and couples - Scalar components of a moment - Varignon's theorem - Single equivalent force -Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in three dimensions

9+6

9+6

LTPC 3 2 0 4

GE8292

UNIT III PROPERTIES OF SURFACES AND SOLIDS

Centroids and centre of mass – Centroids of lines and areas - Rectangular, circular, triangular areas by integration – T section, I section, - Angle section, Hollow section by using standard formula – Theorems of Pappus - Area moments of inertia of plane areas – Rectangular, circular, triangular areas by integration – T section, I section, Angle section, Hollow section by using standard formula – Parallel axis theorem and perpendicular axis theorem – Principal moments of inertia of plane areas – Principal axes of inertia-Mass moment of inertia –mass moment of inertia for prismatic, cylindrical and spherical solids from first principle – Relation to area moments of inertia.

UNIT IV DYNAMICS OF PARTICLES

Displacements, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion - Newton's laws of motion – Work Energy Equation– Impulse and Momentum – Impact of elastic bodies.

UNIT V FRICTION AND RIGID BODY DYNAMICS

Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge friction-. Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere.

OUTCOMES:

On successful completion of this course, the student will be able to

- illustrate the vectorial and scalar representation of forces and moments
 - analyse the rigid body in equilibrium
 - evaluate the properties of surfaces and solids
 - calculate dynamic forces exerted in rigid body
 - determine the friction and the effects by the laws of friction

TEXT BOOKS:

- 1. Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers (In SI Units): Statics and Dynamics", 8th Edition, Tata McGraw-Hill Publishing company, New Delhi (2004).
- 2. Vela Murali, "Engineering Mechanics", Oxford University Press (2010)

REFERENCES:

- 1. Bhavikatti, S.S and Rajashekarappa, K.G., "Engineering Mechanics", New Age International (P) Limited Publishers, 1998.
- 2. Hibbeller, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 11th Edition, Pearson Education 2010.
- 3. Irving H. Shames and Krishna Mohana Rao. G., "Engineering Mechanics Statics and Dynamics", 4th Edition, Pearson Education 2006.
- 4. Meriam J.L. and Kraige L.G., "Engineering Mechanics- Statics Volume 1, Dynamics- Volume 2", Third Edition, John Wiley & Sons, 1993.
- 5. Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics", 3rd Edition, Vikas Publishing House Pvt. Ltd., 2005.

TOTAL: 45+30=75 PERIODS

9+6

9+6

9+6

GE8261

ENGINEERING PRACTICES LABORATORY

OBJECTIVES:

To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

Buildings:

I CIVIL ENGINEERING PRACTICE

13

18

(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:

- (a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- (b) Study of pipe connections requirements for pumps and turbines.
- (c) Preparation of plumbing line sketches for water supply and sewage works.
- (d) Hands-on-exercise:

Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.

(e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:

(a) Study of the joints in roofs, doors, windows and furniture.(b) Hands-on-exercise:

Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE

Welding:

(a) Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding.

(b) Gas welding practice

Basic Machining:

- (a) Simple Turning and Taper turning
- (b) Drilling Practice

Sheet Metal Work:

- (a) Forming & Bending:
- (b) Model making Trays and funnels.
- (c) Different type of joints.

Machine assembly practice:

- (a) Study of centrifugal pump
- (b) Study of air conditioner

Demonstration on:

- (a) Smithy operations, upsetting, swaging, setting down and bending. Example Exercise Production of hexagonal headed bolt.
- (b) Foundry operations like mould preparation for gear and step cone pulley.
- (c) Fitting Exercises Preparation of square fitting and V fitting models.

- fabricate carpentry components and pipe connections including plumbing works. •
- use welding equipments to join the structures. •
- Carry out the basic machining operations •
- Illustrate on centrifugal pump, Air conditioner, operations of smithy, foundary and fittings
- Carry out basic home electrical works and appliances

1. Assorted components for plumbing consisting of metallic pipes,

- Measure the electrical quantities

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CIVIL

welding outfit.

plastic pipes, flexible pipes, couplings, unions, elbows, plugs and	
other fittings.	15 Sets.
2. Carpentry vice (fitted to work bench)	15 Nos.
3. Standard woodworking tools	15 Sets.
4. Models of industrial trusses, door joints, furniture joints	5 each
5. Power Tools: (a) Rotary Hammer	2 Nos
(b) Demolition Hammer	2 Nos
(c) Circular Saw	2 Nos
(d) Planer	2 Nos
(e) Hand Drilling Machine	2 Nos
(f) Jigsaw	2 Nos
MECHANICAL	
1. Arc welding transformer with cables and holders	5 Nos.
2. Welding booth with exhaust facility	5 Nos.
3. Welding accessories like welding shield, chipping hammer,	
wire brush, etc.	5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other	

2 Nos.

1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.

GROUP B (ELECTRICAL & ELECTRONICS)

2. Fluorescent lamp wiring. 3. Stair case wiring

ELECTRICAL ENGINEERING PRACTICE

4. Measurement of electrical quantities - voltage, current, power & power factor in RLC circuit.

- 5. Measurement of energy using single phase energy meter.
- 6. Measurement of resistance to earth of an electrical equipment.

IV **ELECTRONICS ENGINEERING PRACTICE**

1. Study of Electronic components and equipments – Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.

- 2. Study of logic gates AND, OR, EX-OR and NOT.
- 3. Generation of Clock Signal.
- 4. Soldering practice Components Devices and Circuits Using general purpose PCB.
- 5. Measurement of ripple factor of HWR and FWR.

OUTCOMES:

III

On successful completion of this course, the student will be able to

- Make the models using sheet metal works

Elaborate on the components, gates, soldering practices.

35

TOTAL: 60 PERIODS

13

 5. Centre lathe 6. Hearth furnace, anvil and smithy tools 7. Moulding table, foundry tools 8. Power Tool: Angle Grinder 9. Study-purpose items: centrifugal pump, air-conditioner 	2 Nos. 2 Sets. 2 Sets. 2 Nos One each.
ELECTRICAL	
1. Assorted electrical components for house wiring	15 Sets
2. Electrical measuring instruments	10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency lamp	1 each
4. Megger (250V/500V)	1 No.
5. Power Tools: (a) Range Finder	2 Nos
(b) Digital Live-wire detector	2 Nos
ELECTRONICS	
1. Soldering guns	10 Nos.
2. Assorted electronic components for making circuits	50 Nos.
3. Small PCBs	10 Nos.
4. Multimeters	10 Nos.
 Study purpose items: Telephone, FM radio, low-voltage power supply 	

OBJECTIVE:

• To train the students in performing various tests on electrical drives, sensors and circuits.

LIST OF EXPERIMENTS:

- 1. Load test on separately excited DC generator
- 2. Load test on Single phase Transformer
- 3. Load test on Induction motor
- 4. Verification of Circuit Laws
- 5. Verification of Circuit Theorems
- 6. Measurement of three phase power
- 7. Load test on DC shunt motor.
- 8. Diode based application circuits
- 9. Transistor based application circuits
- 10. Study of CRO and measurement of AC signals
- 11. Characteristics of LVDT
- 12. Calibration of Rotometer
- 13. RTD and Thermistor

Minimum of 10 Experiments to be carried out :-

TOTAL: 60 PERIODS

OUTCOMES:

- Ability to determine the speed characteristic of different electrical machines
- Ability to design simple circuits involving diodes and transistors
- Ability to use operational amplifiers

S.No.	NAME OF THE EQUIPMENT	Qty.
1	D. C. Motor Generator Set	2
2	D.C. Shunt Motor	2
3	Single Phase Transformer	2
4	Single Phase Induction Motor	2
5	Ammeter A.C and D.C	20
6	Voltmeters A.C and D.C	20
7.	Watt meters LPF and UPF	4
8.	Resistors & Breadboards	-
9.	Cathode Ray Oscilloscopes	4
10.	Dual Regulated power supplies	6
11.	A.C. Signal Generators	4
12.	Transistors (BJT, JFET)	-

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

MA8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS L T P C

OBJECTIVES :

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Singular integrals - Solutions of standard types of first order partial differential equations - Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of PDE – Method of separation of variables - Fourier Series Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction.

12

12