SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more... Available @

www.Binils.com

OEC552 SOFT COMPUTING

DETAILED SYLLABUS

OBJECTIVES:

The student should be made to:

- Classify the various soft computing frame works.
- Be familiar with the design of neural networks, fuzzy logic and fuzzy systems
- Learn mathematical background for optimized genetic programming
- Be expected to neuro-fuzzy hybrid systems and its applications.

UNIT I INTRODUCTION TO SOFT COMPUTING

Soft Computing Constituents-From Conventional AI to Computational Intelligence- Artificial neural network: Introduction, characteristics- learning methods – taxonomy – Evolution of neural networks - basic models - important technologies - applications. Fuzzy logic: Introduction - crisp sets- fuzzy sets - crisp relations and fuzzy relations: cartesian product of relation - classical relation, fuzzy relations, tolerance and equivalence relations, non-iterative fuzzy sets. Genetic algorithm- Introduction - biological background - traditional optimization and search techniques - Genetic basic concepts.

UNIT II NEURAL NETWORKS

McCulloch-Pitts neuron - linear separability - hebb network - supervised learning network: perceptron networks - adaptive linear neuron, multiple adaptive linear neuron, BPN, RBF, TDNN- associative memory network: auto-associative memory network, hetero-associative memory network, BAM, hopfield networks, iterative auto associative memory network & iterative associative memory network –unsupervised learning networks: Kohonen self-organizing feature maps, LVQ – CP networks, ART network.

UNIT III FUZZY LOGIC

Membership functions: features, fuzzification, methods of membership value assignments-Defuzzification: lambda cuts - methods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - extension principle - fuzzy measures - measures of fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning : truth values and tables, fuzzy propositions, formation of rules-decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning-fuzzy inference systems-overview of fuzzy expert system-fuzzy decision making.

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

www.Binils.com

Available @

UNIT IV GENETIC ALGORITHM

Genetic algorithm- Introduction - biological background - traditional optimization and search techniques - Genetic basic concepts - operators – Encoding scheme – Fitness evaluation – crossover - mutation - genetic programming – multilevel optimization – real life problem-advances in GA.

UNIT V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS

Neuro-fuzzy hybrid systems - genetic neuro hybrid systems - genetic fuzzy hybrid and fuzzy genetic hybrid systems - simplified fuzzy ARTMAP - Applications: A fusion approach of multispectral images with SAR, optimization of traveling salesman problem using genetic algorithm approach, soft computing-based hybrid fuzzy controllers.

OUTCOMES:

At the end of the course, the student should be able to:

- Apply various soft computing concepts for practical applications
- Choose and design suitable neural network for real time problems
- Use fuzzy rules and reasoning to develop decision making and expert system
- Explain the importance of optimization techniques and genetic programming
- Review the various hybrid soft computing techniques and apply in real time problems

TEXT BOOKS:

1. J.S.R.Jang, C.T. Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI / Pearson Education 2004.

2. S.N.Sivanandam and S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt Ltd, 2011.