SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers
Results and Many more...

www.Binils.com

Available @

OEE751 BASIC CIRCUIT THEORY

DETAILED SYLLABUS

OBJECTIVES:

- To introduce electric circuits and its analysis
- To impart knowledge on solving circuit equations using network theorems
- To introduce the phenomenon of resonance in coupled circuits.
- To introduce Phasor diagrams and analysis of three phase circuits

UNIT I BASIC CIRCUITS ANALYSIS

Resistive elements - Ohm's Law Resistors in series and parallel circuits – Kirchhoff's laws – Mesh current and node voltage - methods of analysis.

UNIT II NETWORK REDUCTION AND THEOREMS FOR DC CIRCUITS

Network reduction: voltage and current division, source transformation – star delta conversion. Thevenin's and Norton Theorems – Superposition Theorem – Maximum power transfer theorem – Reciprocity Theorem – Milliman's theorem.

UNITIII AC CIRCUITS

Introduction to AC circuits, inductance reactance, capacitive reactance, Phasor diagrams, real power, reactive power, apparent power, power factor, R-L R-C, RLC networks, Network reduction: voltage and current division, source transformation –mesh and node analysis, Thevenin's and Norton Theorems – Superposition Theorem – Maximum power transfer theorem – Reciprocity Theorem – Milliman's theorem.

UNIT IV THREE PHASE CIRCUITS

A.C. circuits – Average and RMS value - Phasor Diagram – Power, Power Factor and Energy. - Analysis of three phase 3-wire and 4-wire circuits with star and delta connected loads, balanced & un balanced – phasor diagram of voltages and currents – power measurement in three phase circuits.

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers
Results and Many more...

www.Binils.com

Available @

UNIT V RESONANCE AND COUPLED CIRCUITS

Series and parallel resonance – their frequency response – Quality factor and Bandwidth - Self and mutual inductance – Coefficient of coupling – Tuned circuits – Single tuned circuits.

OUTCOMES:

- Ability to introduce electric circuits and its analysis
- Ability to impart knowledge on solving circuit equations using network theorems
- Ability to introduce the phenomenon of resonance in coupled circuits.
- Ability to introduce Phasor diagrams and analysis of three phase circuits

TEXT BOOKS:

- 1. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", McGraw Hill publishers, edition, New Delhi, 2013.
- 2. Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Second Edition, McGraw Hill, 2013.
- 3. Allan H. Robbins, Wilhelm C. Miller, "Circuit Analysis Theory and Practice", Cengage Learning India, 2013.

REFERENCES

- 1. Chakrabarti A, "Circuits Theory (Analysis and synthesis), Dhanpath Rai & Sons, New Delhi, 1999.
- 2. Jegatheesan, R., "Analysis of Electric Circuits," McGraw Hill, 2015.
- 3. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, McGraw-Hill, New Delhi, 2010.
- 4. M E Van Valkenburg, "Network Analysis", Prentice-Hall of India Pvt Ltd, New Delhi, 2015.
- 5. Mahadevan, K., Chitra, C., "Electric Circuits Analysis," Prentice-Hall of India Pvt Ltd., New Delhi, 2015.
- 6. Richard C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", 7th Edition, John Wiley & Sons, Inc. 2015.