SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers
Results and Many more...

www.Binils.com

Available @

OGI752 FUNDAMENTALS OF PLANETARY REMOTE SENSING

DETAILED SYLLABUS

OBJECTIVES:

- To provide an insight to the basics of planetary Remote Sensing
- To demonstrate how the Remote Sensing technique is applied to explore the surface characteristics of the planets and its environ.

UNIT I PLANETARY SCIENCE

History and inventory of solar system – planet-definition –properties – Formation of solar system. Planetary Atmospheres: composition - thermal structure – clouds – meteorology – photo chemistry – Eddy Diffusion. Surfaces and Interiors: Mineralogy and Petrology – Planetary interiors – surface morphology. Terrestrial planets and the Moon: The moon & Mercury – surface – Atmosphere – Interior – Magnetic Field.

UNIT II SATELLITE ORBIT

Equation of 2 body motion: Energy, orbits and energy – Circular Orbits-EOS TerraGeosynchronous satellite orbit- orbital elements. Launching Satellites and space probes – Retrograde orbits -Inter planetary Transfer – Hohmann Transfer – Gravity Assist-CassiniMessenger. Breaking into orbit or landing- Retro Rockets-Aerobraking- Parachutes-Impact.

UNIT III PROPERTIES OF EMR

Definition of Remote Sensing – Electro Magnetic Radiation: Electromagnetic Spectrum Development of EM theory – White Light – Excited hydrogen gas – Quantum physics – Definition. EM Radiation: Properties – Radiant energy – Sun's luminosity calculation. Other Energy: Black body radiation – Plank curve of black body. Properties of EMR: Kinetic energy – Polarization, laws of Max Plank, Wien's and Stephen Boltzmann

UNIT IV RADIOMETRY AND SCATTEROMETRY

Radiometry – Radar Altimetry – Effect of surface roughness – Altimetry derived data – Reflectivity – Radiometry and Derived emissivity – Incorporation of data set into image analysis – Introduction to SAR – convolution – bidirectional reflectance distribution – Microwave scatterometry - side looking RADAR, SAR – Interferometry.

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers
Results and Many more...

www.Binils.com

Available @

UNITY PLANETARY APPLICATION

Planetary Imaging Spectroscopy- USGS Tetracoder and Expert system - Mars Global Surveyor Mission (MGS) - Digital Elevation Model (DEM) of Mars - Mars Orbiter Camera (MOC) - Stereo and photoclinometric techniques for DEM.

OUTCOMES:

On completion of the course, the students have

- Exposure to fundamentals of planetary science or orbital mechanics
- The principles of observing the planets
- Knowledge of Remote Sensing methods for determining surface elevation and mapping of planets.

REFERENCES:

- 1. Fundamental Planetary Science: Physics, Chemistry and Habitability, Jack J. Lissauer, Imke de Pater (2013) Cambridge University Press
- 2. Physical principles of Remote Sensing, Rees, W.G. (2013) 3rd Edn, Cambridge University Press
- 3. Radar Remote Sensing of Planetary Surfaces, Bruce A Campbell (2011) Cambridge University Press
- 4. Remote Sensing Application for Planetary Surfaces, Kumar Deepak (2014) Lambert Publication.