SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

www.Binils.com

Available @

ORO751 NANO COMPUTING

DETAILED SYLLABUS

OBJECTIVES:

The student should be made to:

- Learn nano computing challenges
- Be familiar with the imperfections
- Be exposed to reliability evaluation strategies
- Learn nano scale quantum computing
- Understand Molecular Computing and Optimal Computing

UNIT I NANOCOMPUTING-PROSPECTS AND CHALLENGES

Introduction - History of Computing - Nanocomputing - Quantum Computers – Nanocomputing Technologies - Nano Information Processing - Prospects and Challenges - Physics of Nanocomputing: Digital Signals and Gates - Silicon Nanoelectronics - Carbon Nanotube Electronics - Carbon Nanotube Field-effect Transistors – Nanolithography.

UNIT II NANOCOMPUTING WITH IMPERFECTIONS

Introduction - Nanocomputing in the Presence of Defects and Faults - Defect Tolerance - Towards Quadrillion Transistor Logic Systems.

UNIT III RELIABILITY OF NANOCOMPUTING

Markov Random Fields - Reliability Evaluation Strategies - NANOLAB - NANOPRISM - Reliable Manufacturing and Behavior from Law of Large Numbers.

UNIT IV NANOSCALE QUANTUM COMPUTING

Quantum Computers - Hardware Challenges to Large Quantum Computers - Fabrication, Test, and Architectural Challenges - Quantum-dot Cellular Automata (QCA) - Computing with QCA - QCA Clocking - QCA Design Rules.

UNIT V QCADESIGNER SOFTWARE AND QCA IMPLEMENTATION

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more... Available @ www.Binils.com

Basic QCA Circuits using QCA Designer - QCA Implementation - Molecular and Optical Computing: Molecular Computing - Optimal Computing - Ultrafast Pulse Shaping and Tb/sec Data Speeds.

OUTCOMES:

Upon completion of the course, the student should be able to:

- Discuss nano computing challenges.
- Handle the imperfections.
- Apply reliability evaluation strategies.
- Use nano scale quantum computing.
- Utilize Molecular Computing and Optimal Computing.

TEXT BOOK:

1. Sahni V. and Goswami D., Nano Computing, McGraw Hill Education Asia Ltd. (2008), ISBN (13): 978007024892.

REFERENCES:

1. Sandeep K. Shukla and R. Iris Bahar., Nano, Quantum and Molecular Computing, Kluwer Academic Publishers 2004, ISBN: 1402080670.

2. Sahni V, Quantum Computing, McGraw Hill Education Asia Ltd. 2007.

3. Jean-Baptiste Waldner, Nanocomputers and Swarm Intelligence, John Wiley & Sons, Inc. 2008, ISBN (13): 978-1848210097.