www.AllAbtEngg.com For Questions, Notes, Syllabus & Results <u>AE8404 PROPULSION – I</u>

DETAILED SYLLABUS

OBJECTIVE:

To establish fundamental approach and application of jet engine components. Also analysis of flow phenomenon and estimation of thrust developed by jet engine.

UNIT I PRINCIPLES OF AIR BREATHING ENGINES

Operating principles of piston engines – thermal efficiency calculations – classification of piston engines - illustration of working of gas turbine engines – factors affecting thrust – methods of thrust augmentation – performance parameters of jet engines.

UNIT II JET ENGINE INTAKES AND EXHAUST NOZZLES

Ram effect, Internal flow and Stall in subsonic inlets – relation between minimum area ratio and eternal deceleration ratio – diffuser performance – modes of operation - supersonic inlets – starting problem on supersonic inlets – shock swallowing by area variation – real flow through nozzles and nozzle efficiency – losses in nozzles – ejector and variable area nozzles – interaction of nozzle flow with adjacent surfaces – thrust reversal.

UNIT III JET ENGINE COMBUSTION CHAMBERS

Chemistry of combustion, Combustion equations, Combustion process, classification of combustion chambers – combustion chamber performance – effect of operating variables on performance – flame stabilization, Cooling process, Materials, Aircraft fuels, HHV, LHV, Orsat apparatus

UNIT IV JET ENGINE COMPRESSORS

Euler's turbo machinery equation, Principle operation of centrifugal compressor, Principle operation of axial flow compressor– Work done and pressure rise – velocity diagrams – degree of reaction – free vortex and constant reaction designs of axial flow compressor – performance parameters axial flow compressors– stage efficiency.

UNIT V JET ENGINE TURBINES

Principle of operation of axial flow turbines– limitations of radial flow turbines- Work done and pressure rise – Velocity diagrams – degree of reaction – constant nozzle angle designs – performance parameters of axial flow turbine– turbine blade cooling methods – stage efficiency calculations – basic blade profile design considerations – matching of compressor and turbine

TEXT BOOK:

1. Hill, P.G. & Peterson, C.R. "Mechanics & Thermodynamics of Propulsion" Pearson education (2009)

REFERENCES:

1. Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H. "Gas Turbine Theory", Pearson Education Canada; 6th edition, 2008.

2. Mathur, M.L. and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers & Distributors, Delhi, 2nd edition 2014.

3. Oates, G.C., "Aero thermodynamics of Aircraft Engine Components", AIAA Education Series, New York, 1985.

4. "Rolls Royce Jet Engine", Rolls Royce; 4th revised edition, 1986.