Diploma, Anna Univ UG & PG Courses

Notes Available @

Syllabus

Question Papers

Results and Many more... www.AllAbtEngg.com

EC8074 ROBOTICS AND AUTOMATION

DETAILED SYLLABUS

OBJECTIVES:

The student should be made:

- To understand the basic concepts associated with the design, functioning, applications and social aspects of robots
- To study about the electrical drive systems and sensors used in robotics for various applications
- To learn about analyzing robot kinematics, dynamics through different methodologies and study various design aspects of robot arm manipulator and end-effector
- To learn about various motion planning techniques and the associated control architecture
- To understand the implications of AI and other trending concepts of robotics

UNIT I FOUNDATION FOR BEGINNERS

Introduction -- brief history, definition, anatomy, types, classification, specification and need based applications; role and need of robots for the immediate problems of the society, future of mankind and automation-ethical issues; industrial scenario local and global, case studies on mobile robot research platform and industrial serial arm manipulator

UNIT II BUILDING BLOCKS OF A ROBOT

Types of electric motors - DC, Servo, Stepper; specification, drives for motors - speed & direction control and circuitry, Selection criterion for actuators, direct drives, non-traditional actuators; Sensors for localization, navigation, obstacle avoidance and path planning in known and unknown environments — optical, inertial, thermal, chemical, biosensor, other common sensors; Case study on choice of sensors and actuators for maze solving robot and self driving cars

UNIT III KINEMATICS, DYNAMICS AND DESIGN OF ROBOTS & END-EFFECTORS

Robot kinematics - Geometric approach for 2R, 3R manipulators, homogenous transformation using D-H representation, kinematics of WMR, Lagrangian formulation for 2R robot dynamics; Mechanical design aspects of a 2R manipulator, WMR; End-effector - common types and design case study.

UNIT IV NAVIGATION, PATH PLANNING AND CONTROL ARCHITECTURE

Mapping & Navigation – SLAM, Path planning for serial manipulators; types of control architectures - Cartesian control, Force control and hybrid position/force control, Behaviour based control, application of Neural network, fuzzy logic, optimization algorithms for navigation problems, programming methodologies of a robot

UNIT V AI AND OTHER RESEARCH TRENDS IN ROBOTICS

Application of Machine learning - AI, Expert systems; Tele-robotics and Virtual Reality, Micro & Nanorobots, Unmanned vehicles, Cognitive robotics, Evolutionary robotics, Humanoids

Diploma, Anna Univ UG & PG Courses

Notes Syllabus

Question Papers

Results and Many more...

Available @

www.AllAbtEngg.com

TEXT BOOKS:

1. Saeed. B. Niku, Introduction to Robotics, Analysis, system, Applications, Pearson educations, 2002

2. Roland Siegwart, Illah Reza Nourbakhsh, Introduction to Autonomous Mobile Robots, MIT Press, 2011

REFERENCES:

- 1. Richard David Klafter, Thomas A. Chmielewski, Michael Negin, Robotic engineering: an integrated approach, Prentice Hall, 1989
- 2. Craig, J. J., Introduction to Robotics: Mechanics and Control, 2nd Edition, Addison-Wesley, 1989.
- 3. K.S. Fu, R.C. Gonzalez and C.S.G. Lee, Robotics: Control, Sensing, Vision and Intelligence, McGraw-Hill, 1987.
- 4. Wesley E Snyder R, Industrial Robots, Computer Interfacing and Control, Prentice Hall International Edition, 1988.
- 5. Robin Murphy, Introduction to Al Robotics, MIT Press, 2000
- 6. Ronald C. Arkin, Behavior-based Robotics, MIT Press, 1998
- 7. N. P. Padhy, Artificial Intelligence and Intelligent Systems, Oxford University Press, 2005
- 8. Stefano Nolfi, Dario Floreano, Evolutionary Robotics The Biology, Intelligence and Technology of Self-Organizing Machines (Intelligent Robotics and Autonomous Agents series), MIT Press, 2004.