Diploma, Anna Univ UG & PG Courses

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.AllAbtEngg.com

EI8075 FIBRE OPTICS AND LASER INSTRUMENTS

DETAILED SYLLABUS

COURSE OBJECTIVES

- To expose the students to the basic concepts of optical fibres and their properties.
- To provide adequate knowledge about the Industrial applications of optical fibres.
- To expose the students to the Laser fundamentals.
- To provide adequate knowledge about Industrial application of lasers.
- To provide adequate knowledge about holography and Medical applications of Lasers.

UNIT I OPTICAL FIBRES AND THEIR PROPERTIES

Construction of optical fiber cable: Guiding mechanism in optical fiber and Basic component of optical fiber communication, –Principles of light propagation through a fibre: Total internal reflection, Acceptance angle (θa), Numerical aperture and Skew mode, –Different types of fibres and their properties: Single and multimode fibers and Step index and graded index fibers,– fibre characteristics: Mechanical characteristics and Transmission characteristics, – Absorption losses – Scattering losses – Dispersion – Connectors and splicers –Fibre termination – Optical sources: Light Emitting Diode (LED), – Optical detectors: PIN Diode.

UNIT II INDUSTRIAL APPLICATION OF OPTICAL FIBRES

Fibre optic sensors: Types of fiber optics sensor, Intrinsic sensor- Temperature/ Pressure sensor, Extrinsic sensors, Phase Modulated Fibre Optic Sensor and Displacement sensor (Extrinsic Sensor) – Fibre optic instrumentation system: Measurement of attenuation (by cut back method), Optical domain reflectometers, Fiber Scattering loss Measurement, Fiber Absorption Measurement, Fiber dispersion measurements, End reflection method and Near field scanning techniques – Different types of modulators: Electro-optic modulator (EOM) – Interferometric method of measurement of length – Moire fringes – Measurement of pressure, temperature, current, voltage, liquid level and strain.

UNIT III LASER FUNDAMENTALS

Fundamental characteristics of lasers – Level Lasers: Two-Level Laser, Three Level Laser, Quasi Three and four level lasers – Properties of laser: Monochromaticity, Coherence, Divergence and Directionality and Brightness –Laser modes – Resonator configuration – Qswitching and mode locking – Cavity damping – Types of lasers; – Gas lasers, solid lasers, liquid lasers and semiconductor lasers.

UNIT IV INDUSTRIAL APPLICATION OF LASERS

Laser for measurement of distance, Laser for measurement of length, Laser for measurement of velocity, Laser for measurement of acceleration, Laser for measurement of current, voltage and Laser for measurement of Atmospheric Effect: Types of LIDAR, Construction And Working, and LIDAR Applications – Material processing: Laser instrumentation for material processing, Powder Feeder, Laser Heating, Laser Welding, Laser Melting, Conduction Limited Melting and Key Hole Melting –

Diploma, Anna Univ UG & PG Courses

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.AllAbtEngg.com

Laser trimming of material: Process of Laser Trimming, Types of Trim, Construction and Working Advantages – Material Removal and vaporization: Process of Material Removal.

UNIT V HOLOGRAM AND MEDICAL APPLICATIONS

Holography: Basic Principle, Holography vs. photography, Principle of Hologram Recording, Condition for Recording A Hologram, Reconstructing and viewing the holographic image—Holography for non-destructive testing – Holographic components – Medical applications of lasers, laser-Tissue Interactions Photochemical reactions, Thermalisation, collisional relaxation, Types of Interactions and Selecting an Interaction Mechanism – Laser instruments for surgery, removal of tumors of vocal cards, brain surgery, plastic surgery, gynaecology and oncology.

TEXT BOOKS:

- 1. J.M. Senior, 'Optical Fibre Communication Principles and Practice', Prentice Hall of India,1985.
- 2. J. Wilson and J.F.B. Hawkes, 'Introduction to Opto Electronics', Prentice Hall of India, 2001.
- 3. Eric Udd, William B., and Spillman, Jr., "Fiber Optic Sensors: An Introduction for Engineers and Scientists", John Wiley & Sons, 2011.

REFERENCES:

- 1. G. Keiser, 'Optical Fibre Communication', McGraw Hill, 1995.
- 2. M. Arumugam, 'Optical Fibre Communication and Sensors', Anuradha Agencies, 2002.
- 3. John F. Ready, "Industrial Applications of Lasers", Academic Press, Digitized in 2008.
- 4. Monte Ross, 'Laser Applications', McGraw Hill, 1968.
- 5. John and Harry, "Industrial lasers and their application", McGraw-Hill, 2002.
- 6. Keiser, G., "Optical Fiber Communication", McGraw-Hill, 3rd Edition, 2000.