www.AllAbtEngg.com

For Questions, Notes, Syllabus & Results

EE8702 POWER SYSTEM OPERATION AND CONTROL

DETAILED SYLLABUS

UNIT I PRELIMINARIES ON POWER SYSTEM OPERATION AND CONTROL

Power scenario in Indian grid – National and Regional load dispatching centers – requirements of good power system - necessity of voltage and frequency regulation – real power vs frequency and reactive power vs voltage control loops - system load variation, load curves and basic concepts of load dispatching - load forecasting - Basics of speed governing mechanisms and modeling - speed load characteristics - regulation of two generators in parallel.

UNIT II REAL POWER - FREQUENCY CONTROL

Load Frequency Control (LFC) of single area system-static and dynamic analysis of uncontrolled and controlled cases - LFC of two area system - tie line modeling – block diagram representation of two area system - static and dynamic analysis - tie line with frequency bias control – state variability model - integration of economic dispatch control with LFC.

UNIT III REACTIVE POWER – VOLTAGE CONTROL

Generation and absorption of reactive power - basics of reactive power control – Automatic Voltage Regulator (AVR) – brushless AC excitation system – block diagram representation of AVR loop - static and dynamic analysis – stability compensation – voltage drop in transmission line - methods of reactive power injection - tap changing transformer, SVC (TCR + TSC) and STATCOM for voltage control.

UNIT IV ECONOMIC OPERATION OF POWER SYSTEM

Statement of economic dispatch problem - input and output characteristics of thermal plant - incremental cost curve - optimal operation of thermal units without and with transmission losses (no derivation of transmission loss coefficients) - base point and participation factors method - statement of unit commitment (UC) problem - constraints on UC problem - solution of UC problem using priority list – special aspects of short term and long term hydrothermal problems.

<u>UNIT V COMPUTER CONTROL OF POWER SYSTEMS</u>

Need of computer control of power systems-concept of energy control centers and functions – PMU - system monitoring, data acquisition and controls - System hardware configurations - SCADA and EMS functions - state estimation problem – measurements and errors - weighted least square estimation - various operating states - state transition diagram.

OBJECTIVES:

To impart knowledge on the following topics

- Significance of power system operation and control.
- Real power-frequency interaction and design of power-frequency controller.
- Reactive power-voltage interaction and the control actions to be implemented for maintaining the voltage profile against varying system load.
- · Economic operation of power system.

www.AllAbtEngg.com

For Questions, Notes, Syllabus & Results

SCADA and its application for real time operation and control of power systems

TEXT BOOKS:

- 1. Olle. I. Elgerd, 'Electric Energy Systems theory An introduction', McGraw Hill Education Pvt. Ltd., New Delhi, 34th reprint, 2010.
- 2. Allen. J. Wood and Bruce F. Wollen berg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 2016.
- 3. Abhijit Chakrabarti and Sunita Halder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third Edition, 2010.

REFERENCES

- 1. Kothari D.P. and Nagrath I.J., 'Power System Engineering', Tata McGraw-Hill Education, Second Edition, 2008.
- 2. Hadi Saadat, 'Power System Analysis', McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.
- 3. Kundur P., 'Power System Stability and Control, McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010.