www.AllAbtEngg.com

For Questions, Notes, Syllabus & Results

CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN

DETAILED SYLLABUS

OBJECTIVES:

The student should be made to:

- · Learn the various number systems.
- Learn Boolean Algebra
- Understand the various logic gates.
- Be familiar with various combinational circuits.
- Be familiar with designing synchronous and asynchronous sequential circuits.
- Be exposed to designing using PLD

UNIT I BOOLEAN ALGEBRA AND LOGIC GATES

Review of Number Systems – Arithmetic Operations – Binary Codes – Boolean Algebra and Theorems – Boolean Functions – Simplification of Boolean Functions using Karnaugh Map and Tabulation Methods – Logic Gates – NAND and NOR Implementations.

UNIT II COMBINATIONAL LOGIC

Combinational Circuits – Analysis and Design Procedures – Circuits for Arithmetic Operations, Code Conversion – Decoders and Encoders – Multiplexers and Demultiplexers – Introduction to HDL – HDL Models of Combinational circuits.

UNIT III SYNCHRONOUS SEQUENTIAL LOGIC

Sequential Circuits – Latches and Flip Flops – Analysis and Design Procedures – State Reduction and State Assignment – Shift Registers – Counters – HDL for Sequential Logic Circuits.

UNIT IV ASYNCHRONOUS SEQUENTIAL LOGIC

Analysis and Design of Asynchronous Sequential Circuits – Reduction of State and Flow Tables – Race-free State Assignment – Hazards.

UNIT V MEMORY AND PROGRAMMABLE LOGIC

RAM and ROM – Memory Decoding – Error Detection and Correction – Programmable Logic Array – Programmable Array Logic – Sequential Programmable Devices – Application Specific Integrated Circuits.

TEXT BOOK:

1. Morris Mano M. and Michael D. Ciletti, "Digital Design", IV Edition, Pearson Education, 2008.

REFERENCES:

- 1. John F. Wakerly, "Digital Design Principles and Practices", Fourth Edition, Pearson Education, 2007.
- 2. Charles H. Roth Jr, "Fundamentals of Logic Design", Fifth Edition Jaico Publishing House, Mumbai, 2003.
- 3. Donald D. Givone, "Digital Principles and Design", Tata Mcgraw Hill, 2003.
- 4. Kharate G. K., "Digital Electronics", Oxford University Press, 2010.