Diploma, Anna Univ UG & PG Courses

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.AllAbtEngg.com

AE6013 HYPERSONIC AERODYNAMICS

DETAILED SYLLABUS

OBJECTIVES

 To introduce fundamental concepts and features peculiar to hypersonic flow to students to familiarize them with the aerodynamical aspects of hypersonic vehicles and the general hypersonic flow theory.

<u>UNIT I FUNDAMENTALS OF HYPERSONIC AERODYNAMICS</u>

Introduction to hypersonic aerodynamics – differences between hypersonic aerodynamics and supersonic aerodynamics - concept of thin shock layers and entropy layers – hypersonic flight paths – hypersonic similarity parameters – shock wave and expansion wave relations of inviscid hypersonic flows.

UNIT II SIMPLE SOLUTION METHODS FOR HYPERSONIC INVISCID FLOWS

Local surface inclination methods – Newtonian theory – modified Newtonian law – tangent wedge and tangent cone and shock expansion methods – approximate methods - hypersonic small disturbance theory – thin shock layer theory.

UNIT III VISCOUS HYPERSONIC FLOW THEORY

Boundary layer equations for hypersonic flow – hypersonic boundary layers – self similar and non self similar boundary layers – solution methods for non self similar boundary layers – aerodynamic heating and its adverse effects on airframe.

UNIT IV VISCOUS INTERACTIONS IN HYPERSONIC FLOWS

Introduction to the concept of viscous interaction in hypersonic flows - Strong and weak viscous interactions - hypersonic viscous interaction similarity parameter - introduction to shock wave boundary layer interactions.

UNIT V HIGH TEMPERATURE EFFECTS in HYPERSONIC FLOWS

Nature of high temperature flows – chemical effects in air – real and perfect gases – Gibb's free energy and entropy - chemically reacting boundary layers – recombination and dissociation.

TEXT BOOKS:

1. John D. Anderson. Jr., "Hypersonic and High Temperature Gas Dynamics", Mc. Graw hill Series, New York, 1996.

REFERENCES:

1. John D. Anderson. Jr., "Modern Compressible flow with historical Perspective", Mc.Graw Hill Publishing Company, New York, 1996.