www.AllAbtEngg.com

For Questions, Notes, Syllabus & Results

EE6401 ELECTRICAL MACHINES - I

DETAILED SYLLABUS

UNIT I MAGNETIC CIRCUITS AND MAGNETIC MATERIALS

Magnetic circuits –Laws governing magnetic circuits - Flux linkage, Inductance and energy – Statically and Dynamically induced EMF - Torque – Properties of magnetic materials, Hysterisis and Eddy Current losses - AC excitation, introduction to permanent magnets-Transformer as a magnetically coupled circuit.

UNIT II TRANSFORMERS

Construction – principle of operation – equivalent circuit parameters – phasor diagrams, losses – testing – efficiency and voltage regulation-all day efficiency-Sumpner's test, per unit representation – inrush current - three phase transformers-connections – Scott Connection – Phasing of transformer – parallel operation of three phase transformers-auto transformer – tap changing transformers- tertiary winding.

UNIT III ELECTROMECHANICAL ENERGY CONVERSION AND CONCEPTS IN ROTATING MACHINES

Energy in magnetic system – Field energy and co energy-force and torque equations – singly and multiply excited magnetic field systems-mmf of distributed windings – Winding Inductances-, magnetic fields in rotating machines – rotating mmf waves – magnetic saturation and leakage fluxes.

UNIT IV DC GENERATORS

Construction and components of DC Machine – Principle of operation - Lap and wave windings-EMF equations— circuit model – armature reaction –methods of excitation-commutation and interpoles - compensating winding –characteristics of DC generators.

UNIT V DC MOTORS

Principle and operations - types of DC Motors – Speed Torque Characteristics of DC Motors-starting and speed control of DC motors –Plugging, dynamic and regenerative braking- testing and efficiency – Retardation test- Swinburne's test and Hopkinson's test - Permanent magnet dc motors (PMDC)-DC Motor applications.

OBJECTIVES:

- To introduce techniques of magnetic-circuit analysis and introduce magnetic materials
- To familiarize the constructional details, the principle of operation, prediction of performance, the methods of testing the transformers and three phase transformer connections.
- To study the working principles of electrical machines using the concepts of electromechanical energy conversion principles and derive expressions for generated voltage and torque developed in all Electrical Machines.
- To study the working principles of DC machines as Generator types, determination of their no load/load characteristics, starting and methods of speed control of motors.

www.AllAbtEngg.com

For Questions, Notes, Syllabus & Results

• To estimate the various losses taking place in D.C. Motor and to study the different testing methods to arrive at their performance.

TEXT BOOKS:

- 1. Nagrath I. J and Kothari D. P. 'Electric Machines', Fourth Edition, Tata McGraw Hill Publishing Company Ltd, 2010.
- 2. M. N. Bandyopadhyay, Electrical Machines Theory and Practice, PHI Learning PVT LTD., New Delhi, 2009.
- 3. Fitzgerald. A.E., Charles Kingsely Jr, Stephen D. Umans, 'Electric Machinery', Sixth edition, Tata McGraw Hill Books Company, 2003.

REFERENCES:

- 1. P. C. Sen., 'Principles of Electrical Machines and Power Electronics', John Wiley & Sons, 1997.
- 2. Syed A. Nasar, Electric Machines and Power Systems: Volume I, Mcgraw-Hill College International Edition, January 1995.
- 3. Deshpande M. V., "Electrical Machines" PHI Learning Pvt. Ltd., New Delhi, 2011.
- 4. P.S. Bimbhra, 'Electrical Machinery', Khanna Publishers, 2003.
- 5. S. Sarma & K. Pathak "Electric Machines", Cengage Learning India (P) Ltd., Delhi, 2011.